RESUMEN
Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.
Asunto(s)
Camellia sinensis , Catequina , Citocromos b5 , Flavonoides , Proteínas de Plantas , Flavonoides/metabolismo , Flavonoides/biosíntesis , Camellia sinensis/metabolismo , Camellia sinensis/genética , Catequina/metabolismo , Catequina/análogos & derivados , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos b5/metabolismo , Citocromos b5/genética , Hojas de la Planta/metabolismo , Hidroxilación , Retículo Endoplásmico/metabolismoRESUMEN
PURPOSE: This study aimed to evaluate and compare the predictive value of vertebral bone quality (VBQ) score for low BMD and osteoporosis. Furthermore, we sought to enhance diagnostic effectiveness by integrating VBQ with easily accessible patient-specific factors. METHODS: We retrospectively analyzed data from 180 patients. VBQ was obtained by preoperative MRI. Low BMD was classified as meeting the standards for either osteopenia or osteoporosis. The receiver operating characteristic curve analysis and multivariate logistic regression were used to detect the ability of variables to assess BMD. The z-test was used to compare the area under the curves of different variables. RESULTS: VBQ was more effective in identifying low BMD than osteoporosis (AUC, 0.768 vs. 0.613, p = 0.02). Elevated VBQ (OR 6.912, 95% CI 2.72-17.6) and low BMI (0.858, 0.76-0.97) were risk factors for low BMD, while the risk factor for osteoporosis was age (1.067, 1.02-1.12), not VBQ. ROC analysis showed that AUCs were 0.613 for VBQ and 0.665 for age when screening for osteoporosis. The combined variable of VBQ, sex, age, and BMI obtained by logistic regression significantly improved the efficacy of BMD screening, with an AUC of 0.824 for low BMD and 0.733 for osteoporosis. CONCLUSION: VBQ is better at detecting low BMD than identifying osteoporosis. The ability of VBQ to predict osteoporosis is limited, and a similar diagnostic efficacy can be achieved with age. Incorporating VBQ alongside demographic data enhances the efficiency of BMD assessment. With the development of artificial intelligence in medicine, this simple method is promising.
Asunto(s)
Densidad Ósea , Osteoporosis , Humanos , Masculino , Femenino , Persona de Mediana Edad , Osteoporosis/diagnóstico por imagen , Anciano , Estudios Retrospectivos , Columna Vertebral/cirugía , Columna Vertebral/diagnóstico por imagen , Adulto , Enfermedades Óseas Metabólicas/diagnóstico por imagen , Enfermedades Óseas Metabólicas/diagnóstico , Imagen por Resonancia Magnética/métodosRESUMEN
Osteoporosis is a global disease caused by abnormal overactivation of osteoclasts. The acidic environment in sealing zone of osteoclasts with H+ pumped from cytoplasm is critical to the maturation of osteoclasts. Therefore, reducing the intracellular H+ concentration can reduce the H+ secretion of osteoclasts from the source. In our study, we developed a novel nanovesicle which encapsulates Na2HPO4 with a liposome hybridizes with preosteoclast membrane (Na2HPO4@Lipo-pOCm). These nanovesicles release Na2HPO4 into the preosteoclast by targeting preosteoclasts and membrane fusion, reducing the intracellular H+ concentration, and achieve biological cascade regulation of osteoclasts through simple pH regulation. In vitro and in vivo experiments confirmed that these nanovesicles reduce mitochondrial membrane potential by decreasing intracellular H+ concentration, thereby reducing the ROS in osteoclasts as well as the expression of the upstream transcription factor FOXM1 of Acp5. In short, this nanovesicle can significantly inhibit the osteoclasts and ameliorate osteoporosis caused by OVX.
Asunto(s)
Osteoclastos , Osteoporosis , Humanos , Concentración de Iones de Hidrógeno , HomeostasisRESUMEN
Wolbachia, a group of Gram-negative symbiotic bacteria, infects nematodes and a wide range of arthropods. Diaphorina citri Kuwayama, the vector of Candidatus Liberibacter asiaticus (CLas) that causes citrus greening disease, is naturally infected with Wolbachia (wDi). However, the interaction between wDi and D. citri remains poorly understood. In this study, we performed a pan-genome analysis using 65 wDi genomes to gain a comprehensive understanding of wDi. Based on average nucleotide identity (ANI) analysis, we classified the wDi strains into Asia and North America strains. The ANI analysis, principal coordinates analysis (PCoA), and phylogenetic tree analysis supported that the D. citri in Florida did not originate from China. Furthermore, we found that a significant number of core genes were associated with metabolic pathways. Pathways such as thiamine metabolism, type I secretion system, biotin transport, and phospholipid transport were highly conserved across all analyzed wDi genomes. The variation analysis between Asia and North America wDi showed that there were 39,625 single-nucleotide polymorphisms (SNPs), 2153 indels, 10 inversions, 29 translocations, 65 duplications, 10 SV-based insertions, and 4 SV-based deletions. The SV-based insertions and deletions involved genes encoding transposase, phage tail tube protein, ankyrin repeat (ANK) protein, and group II intron-encoded protein. Pan-genome analysis of wDi contributes to our understanding of the geographical population of wDi, the origin of hosts of D. citri, and the interaction between wDi and its host, thus facilitating the development of strategies to control the insects and huanglongbing (HLB).
Asunto(s)
Genoma Bacteriano , Filogenia , Simbiosis , Wolbachia , Wolbachia/genética , Wolbachia/clasificación , Simbiosis/genética , Animales , Asia , América del Norte , Hemípteros/microbiología , Hemípteros/genética , Dípteros/microbiología , Dípteros/genética , Polimorfismo de Nucleótido SimpleRESUMEN
Serine carboxypeptidase-like acyltransferases (SCPL-ATs) play a vital role in the diversification of plant metabolites. Galloylated flavan-3-ols highly accumulate in tea (Camellia sinensis), grape (Vitis vinifera), and persimmon (Diospyros kaki). To date, the biosynthetic mechanism of these compounds remains unknown. Herein, we report that two SCPL-AT paralogs are involved in galloylation of flavan-3-ols: CsSCPL4, which contains the conserved catalytic triad S-D-H, and CsSCPL5, which has the alternative triad T-D-Y. Integrated data from transgenic plants, recombinant enzymes, and gene mutations showed that CsSCPL4 is a catalytic acyltransferase, while CsSCPL5 is a non-catalytic companion paralog (NCCP). Co-expression of CsSCPL4 and CsSCPL5 is likely responsible for the galloylation. Furthermore, pull-down and co-immunoprecipitation assays showed that CsSCPL4 and CsSCPL5 interact, increasing protein stability and promoting post-translational processing. Moreover, phylogenetic analyses revealed that their homologs co-exist in galloylated flavan-3-ol- or hydrolyzable tannin-rich plant species. Enzymatic assays further revealed the necessity of co-expression of those homologs for acyltransferase activity. Evolution analysis revealed that the mutations of the CsSCPL5 catalytic residues may have taken place about 10 million years ago. These findings show that the co-expression of SCPL-ATs and their NCCPs contributes to the acylation of flavan-3-ols in the plant kingdom.
Asunto(s)
Diospyros , Vitis , Acilación , Aciltransferasas/metabolismo , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Flavonoides , Filogenia , Plantas/metabolismo , Polifenoles , Vitis/metabolismoRESUMEN
Root-knot nematodes (RKNs) are infamous plant pathogens in tomato production, causing considerable losses in agriculture worldwide. Mi-1 is the only commercially available RKN-resistance gene; however, the resistance is inactivated when the soil temperature is over 28 °C. Mi-9 in wild tomato (Solanum arcanum LA2157) has stable resistance to RKNs under high temperature but has not been cloned and applied. In this study, a chromosome-scale genome assembly of S. arcanum LA2157 was constructed through Nanopore and Hi-C sequencing. Based on molecular markers of Mi-9 and comparative genomic analysis, the localization region and candidate Mi-9 genes cluster consisting of seven nucleotide-binding sites and leucine-rich repeat (NBS-LRR) genes were located. Transcriptional expression profiles confirmed that five of the seven candidate genes were expressed in root tissue. Moreover, virus-induced gene silencing of the Sarc_034200 gene resulted in increased susceptibility of S. arcanum LA2157 to Meloidogyne incognita, and genetic transformation of the Sarc_034200 gene in susceptible Solanum pimpinellifolium conferred significant resistance to M. incognita at 25 °C and 30 °C and showed hypersensitive responses at nematode infection sites. This suggested that Sarc_034200 is the Mi-9 gene. In summary, we cloned, confirmed and applied the heat-stable RKN-resistance gene Mi-9, which is of great significance to tomato breeding for nematode resistance.
Asunto(s)
Solanum lycopersicum , Solanum , Tylenchoidea , Animales , Solanum/genética , Calor , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Solanum lycopersicum/genética , Cromosomas/metabolismo , Raíces de Plantas/genética , Enfermedades de las Plantas/genéticaRESUMEN
Herbal immunomodulators are an important part of prevention and control on viral diseases in aquaculture because of their propensity to improve immunity in fish. The present study was conducted to evaluate the immunomodulatory effect and antiviral activity of a synthesized derivative (serial number: LML1022) against spring viremia of carp virus (SVCV) infection in vitro and in vivo. The antiviral data suggested that LML1022 at 100 µM significantly inhibited the virus replication in epithelioma papulosum cyprini (EPC) cells, and may completely inhibit the infectivity of SVCV virion particles to fish cells by affecting the viral internalization. The results in the related stability of water environments also demonstrated that LML1022 had an inhibitory half-life of 2.3 d at 15 °C, which would facilitate rapid degradation of LML1022 in aquaculture application. For in vivo study, the survival rate of SVCV-infected common carp was increased 30% at least under continuous oral injection of LML1022 at 2.0 mg/kg for 7 d treatment. Additionally, pretreatment of LML1022 on fish prior to SVCV infection also obviously reduced the viral loads in vivo as well as an improved survival rate, showing that LML1022 was potential as an immunomodulator. As an immune response, LML1022 significantly upregulated the immune-related gene expression including IFN-γ2b, IFN-I, ISG15 and Mx1, indicating that its dietary administration may improve the resistance of common carp against SVCV infection.
Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/tratamiento farmacológico , Rhabdoviridae/fisiología , Antivirales/farmacología , Antivirales/uso terapéutico , Factores Inmunológicos/farmacología , Adyuvantes Inmunológicos/farmacología , Viremia/tratamiento farmacológicoRESUMEN
The transmission of insect-borne viruses involves sophisticated interactions between viruses, host plants, and vectors. Chemical compounds play an important role in these interactions. Several studies reported that the plant virus tomato spotted wilt orthotospovirus (TSWV) increases host plant quality for its vector and benefits the vector thrips Frankliniella occidentalis. However, few studies have investigated the chemical ecology of thrips vectors, TSWV, and host plants. Here, we demonstrated that in TSWV-infected host plant Datura stramonium, (1) F. occidentalis were more attracted to feeding on TSWV-infected D. stramonium; (2) atropine and scopolamine, the main tropane alkaloids in D. stramonium, which are toxic to animals, were down-regulated by TSWV infection of the plant; and (3) F. occidentalis had better biological performance (prolonged adult longevity and increased fecundity, resulting in accelerated population growth) on TSWV-infected D. stramonium than on TSWV non-infected plants. These findings provide in-depth information about the physiological mechanisms responsible for the virus's benefits to its vector by virus infection of plant regulating alkaloid accumulation in the plant.
Asunto(s)
Alcaloides , Datura stramonium , Virus de Plantas , Virus ARN , Solanum lycopersicum , Thysanoptera , Tospovirus , Animales , Thysanoptera/fisiología , Tospovirus/fisiología , Plantas , Enfermedades de las Plantas/prevención & controlRESUMEN
As an endosymbiont, Wolbachia exerts significant effects on the host, including on reproduction, immunity, and metabolism. However, the study of Wolbachia in Thysanopteran insects, such as flower thrips Frankliniella intonsa, remains limited. Here, we assembled a gap-free looped genome assembly of Wolbachia strain wFI in a length of 1,463,884 bp (GC content 33.80%), using Nanopore long reads and Illumina short reads. The annotation of wFI identified a total of 1838 protein-coding genes (including 85 pseudogenes), 3 ribosomal RNAs (rRNAs), 35 transfer RNAs (tRNAs), and 1 transfer-messenger RNA (tmRNA). Beyond this basic description, we identified mobile genetic elements, such as prophage and insertion sequences (ISs), which make up 17% of the entire wFI genome, as well as genes involved in riboflavin and biotin synthesis and metabolism. This research lays the foundation for understanding the nutritional mutualism between Wolbachia and flower thrips. It also serves as a valuable resource for future studies delving into the intricate interactions between Wolbachia and its host.
Asunto(s)
Nanoporos , Thysanoptera , Wolbachia , Animales , Wolbachia/genética , Flores , Profagos , ARN RibosómicoRESUMEN
Megalurothrips usitatus (Bagnall) is a destructive pest of legumes, such as cowpea. The biology, population dynamics and control strategies of this pest have been well studied. However, the lack of a high-quality reference genome for M. usitatus has hindered the understanding of key biological questions, such as the mechanism of adaptation to feed preferentially on high-protein host plants and the resistance to proteinase inhibitors (PIs). In this study, we generated a high-resolution chromosome-level reference genome assembly (247.82 Mb, 16 chromosomes) of M. usitatus by combining Oxford Nanopore Technologies (ONT) and Hi-C sequencing. The genome assembly showed higher proportions of GC and repeat content compared to other Thripinae species. Genome annotation revealed 18,624 protein-coding genes, including 4613 paralogs that were preferentially located in TE-rich regions. GO and KEGG enrichment analyses of the paralogs revealed significant enrichment in digestion-related genes. Genome-wide identification uncovered 506 putative digestion-related enzymes; of those, proteases, especially their subgroup serine proteases (SPs), are significantly enriched in paralogs. We hypothesized that the diversity and expansion of the digestion-related genes, especially SPs, could be driven by mobile elements (TEs), which promote the adaptive evolution of M. usitatus to high-protein host plants with high serine protease inhibitors (SPIs). The current study provides a valuable genomic resource for understanding the genetic variation among different pest species adapting to different plant hosts.
Asunto(s)
Fabaceae , Thysanoptera , Animales , Thysanoptera/genética , Proteolisis , Cromosomas , Fabaceae/genética , Serina Proteasas/genética , Flores , FilogeniaRESUMEN
Crop domestication and evolution represent key fields of plant and genetics research. Here, we re-sequenced and analyzed whole genome data from 51 wild accessions and 53 representative cultivars of Eriobotrya japonica, an important semi-subtropical fruit crop. Population genomics analysis suggested that modern cultivated E. japonica experienced a two-staged domestication fitting the "marginality model," being initially domesticated in west-northern Hubei province from a mono-phylogenetic wild progenitor, then refined mainly in Jiangsu, Zhejiang and Fujian provinces of China. Cultivated E. japonica has experienced little reduction in genome-wide nucleotide polymorphism compared with wild forms. Genes responsible for sugar biosynthesis were enriched in regions harboring putative selective sweeps. An approach based on co-clustering into gene families and evaluating chromosome colinearity of orthologous and paralogous genes was used to identify convergent/parallel selective sweeps among different crops. Specifically, more than one hundred of orthologs and paralogs undergoing selective sweeps were identified between loquat, apple and peach, among which 14 encoded "UDP glycosyltransferase 1." In sum, the study not only provided valuable information for breeding of E. japonica, but also enriched knowledge of crop domestication.
Asunto(s)
Eriobotrya/genética , Genoma de Planta/genética , Malus/genética , Metagenómica , Polimorfismo Genético/genética , Prunus persica/genética , Productos Agrícolas , Domesticación , Filogenia , FitomejoramientoRESUMEN
Rubus chingii Hu (Fu-Pen-Zi), a perennial woody plant in the Rosaceae family, is a characteristic traditional Chinese medicinal plant because of its unique pharmacological effects. There are abundant hydrolyzable tannin (HT) components in R. chingii that provide health benefits. Here, an R. chingii chromosome-scale genome and related functional analysis provide insights into the biosynthetic pathway of HTs. In total, sequence data of 231.21 Mb (155 scaffolds with an N50 of 8.2 Mb) were assembled into seven chromosomes with an average length of 31.4 Mb, and 33 130 protein-coding genes were predicted, 89.28% of which were functionally annotated. Evolutionary analysis showed that R. chingii was most closely related to Rubus occidentalis, from which it was predicted to have diverged 22.46 million years ago (Table S8). Comparative genomic analysis showed that there was a tandem gene cluster of UGT, carboxylesterase (CXE) and SCPL genes on chromosome 02 of R. chingii, including 11 CXE, eight UGT, and six SCPL genes, which may be critical for the synthesis of HTs. In vitro enzyme assays indicated that the proteins encoded by the CXE (LG02.4273) and UGT (LG02.4102) genes have tannin hydrolase and gallic acid glycosyltransferase functions, respectively. The genomic sequence of R. chingii will be a valuable resource for comparative genomic analysis within the Rosaceae family and will be useful for understanding the biosynthesis of HTs.
Asunto(s)
Vías Biosintéticas , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Taninos Hidrolizables/metabolismo , Rubus/genética , Evolución Molecular , Genómica , Familia de Multigenes , Rubus/metabolismoRESUMEN
Bacterial infections pose a serious threat to human health, and the development of new antibiotics has not kept pace with the development of bacterial resistance. Therefore, there is an urgent need to design antibiotic-like nano-formulations that break through bacterial resistance mechanisms. In this work, we successfully synthesized a safe and effective antibacterial nano-formulation of Se@Ag@EGCG by self-assembly of epigallocatechin gallate (EGCG)-coated silver nanoparticles (Ag) on the surface of selenium nanowires (Se). Thein vitrobacteriostatic results showed that 40µg ml-1Se@Ag@EGCG had significant antibacterial activity against drug-resistantStaphylococcus aureus(S. aureus) andEscherichia coli(E. coli) by destroying the formation of bacterial biofilm, promoting the production of high concentration reactive oxygen species and destroying bacterial cell wall. In addition, the results ofin vivoantibacterial experiments showed that subcutaneous administration of 10 mg kg-1of Se@Ag@EGCG could promote wound healing by reducing apoptosis and inflammatory responses in infected wounds. It is worth mentioning that the reduced and modified Se@Ag@EGCG by this natural product has negligiblein vivotoxicity. This development strategy of nano-antibacterial materials, which breaks through the drug resistance mechanism, provides new ideas for the development of drugs for drug-resistant bacterial infections.
Asunto(s)
Infecciones Bacterianas , Nanopartículas del Metal , Nanocables , Selenio , Antibacterianos/farmacología , Biopelículas , Catequina/análogos & derivados , Escherichia coli , Humanos , Especies Reactivas de Oxígeno , Selenio/farmacología , Plata/farmacología , Staphylococcus aureusRESUMEN
Peptidases are very important to parasites, which have central roles in parasite biology and pathogenesis. In this study, by comparative genome analysis, genome-wide peptidase diversities among plant-parasitic nematodes are estimated. We find that genes encoding cysteine peptidases in family C13 (legumain) are significantly abundant in pine wood nematodes Bursaphelenchus genomes, compared to those in other plant-parasitic nematodes. By phylogenetic analysis, a clade of B. xylophilus-specific legumain is identified. RT-qPCR detection shows that these genes are highly expressed at early stage during the nematode infection process. Utilizing transgene technology, cDNAs of three species-specific legumain were introduced into the Arabidopsis γvpe mutant. Functional complementation assay shows that these B. xylophilus legumains can fully complement the activity of Arabidopsis γVPE to mediate plant cell death triggered by the fungal toxin FB1. Secretory activities of these legumains are experimentally validated. By comparative transcriptome analysis, genes involved in plant cell death mediated by legumains are identified, which enrich in GO terms related to ubiquitin protein transferase activity in category molecular function, and response to stimuli in category biological process. Our results suggest that B. xylophilu-specific legumains have potential as effectors to be involved in nematode-plant interaction and can be related to host cell death.
Asunto(s)
Arabidopsis , Micotoxinas , Parásitos , Pinus , Rabdítidos , Tylenchida , Animales , Arabidopsis/genética , Cisteína/genética , Cisteína Endopeptidasas , Péptido Hidrolasas/genética , Filogenia , Pinus/parasitología , Enfermedades de las Plantas/parasitología , Plantas/parasitología , Transferasas/genética , Tylenchida/genética , Ubiquitinas/genética , Virulencia , XylophilusRESUMEN
Coronopus didymus (Brassicaceae) commonly known as lesser swine cress has been reported to be used for its pharmacological activities. This study aimed to evaluate the medicinal potential of C. didymus extracts against cancer, diabetes, infectious bacteria and oxidative stress and the identification of bioactive compounds present in these extracts. The effects of using different solvents for the extraction of C. didymus on the contents of major polyphenols and biological activities were investigated. Plant sample was shade dried, ground to a fine powder, and then soaked in pure acetone, ethanol and methanol. The highest contents of major polyphenols were found in methanol-based extract, i.e., chlorogenic acid, HB acid, kaempferol, ferulic acid, quercetin and benzoic acid with 305.02, 12.42, 11.5, 23.33, 975.7 and 428 mg/g of dry weight, respectively, followed by ethanol- and acetone-based extracts. The methanol-based extract also resulted in the highest antioxidant activities (56.76%), whereas the highest antiproliferative (76.36) and alpha glucosidase inhabitation (96.65) were demonstrated in ethanol-based extracts. No antibacterial property of C. didymus was observed against all the tested strains of bacteria. Further studies should be focused on the identification of specific bioactive compounds responsible for pharmacological activities.
Asunto(s)
Brassicaceae , Lepidium , Acetona , Animales , Antioxidantes/farmacología , Ácido Benzoico , Ácido Clorogénico , Etanol , Hipoglucemiantes/farmacología , Quempferoles , Metanol , Extractos Vegetales/farmacología , Polifenoles/farmacología , Polvos , Quercetina , Solventes , Porcinos , alfa-GlucosidasasRESUMEN
The plant flavonoid dogma proposes that labile plant flavonoid carbocations (PFCs) play vital roles in the biosynthesis of proanthocyanidins (PAs). However, whether PFCs exist in plants and how PFCs function remain unclear. Here, we report the use of an integrative strategy including enzymatic assays, mutant analysis, metabolic engineering, isotope labeling and metabolic profiling to capture PFCs and demonstrate their functions. In anthocyanidin reductase (ANR) assays, an (-)-epicatechin conjugate was captured in protic polar nucleophilic methanol alone or methanol-HCl extracts. Tandem mass spectrum (MS/MS) analysis characterized this compound as an (-)-epicatechin-4-O-methyl (EOM) ether, which resulted from (-)-epicatechin carbocation and the methyl group of methanol. Acid-based catalysis of procyanidin B2 and B3 produced four compounds, which were annotated as two EOM and two (+)-catechin-4-O-methyl (COM) ethers. Metabolic profiling of seven PA pathway mutants showed an absence or reduction of two EOM ether isomers in seeds. Camellia sinensis ANRa (CsANRa), leucoanthocyanidin reductase c (CsLARc), and CsMYB5b (a transcription factor) were independently overexpressed for successful PA engineering in tobacco. The EOM ether was remarkably increased in CsANRa and CsMYB5b transgenic flowers. Further metabolic profiling for eight green tea tissues revealed two EOM and two COM ethers associated with PA biosynthesis. Moreover, an incubation of (-)-epicatechin or (+)-catechin with epicatechin carbocation in CsANRa transgenic flower extracts formed dimeric procyanidin B1 or B2, demonstrating the role of flavan-3-ol carbocation in the formation of PAs. Taken together, these findings indicated that flavan-3-ol carbocations exist in extracts and are involved in the biosynthesis of PAs of plants.
Asunto(s)
Flavonoides/metabolismo , Proantocianidinas/biosíntesis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Type 1 diabetes mellitus (T1DM) is characterized by hyperglycemia manifesting as insufficient insulin. Toll-like receptor-4 (TLR4) has been implicated in diabetic osteoporosis. We established streptozotocin (STZ)-induced diabetic mouse model and examined the relevant osteoporosis factors in different experimental groups, the WT-CON group, WT-STZ group, KO-CON group and KO-STZ group, respectively. No obvious protection of TLR4 deletion was shown in mice with diabetes. There was no obvious difference in the body weight or blood glucose concentration between WT-STZ group and KO-STZ group. However, TLR4 deletion reduced the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. Furthermore, TLR4 knockout attenuated STZ-induced diabetic osteoporosis via inhibiting osteoblasts and pre-inflammation factors mediated by the NF-κB pathway. TLR4 deletion ameliorated STZ-induced diabetic osteoporosis in mice, and TLR4 may be used as a potential therapeutic target for the treatment of diabetic osteoporosis.
Asunto(s)
Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Osteoporosis/inducido químicamente , Osteoporosis/genética , Estreptozocina , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Animales , Hueso Esponjoso/citología , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/patología , Diferenciación Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Masculino , Ratones , Terapia Molecular Dirigida , Factor 88 de Diferenciación Mieloide/metabolismo , Osteoclastos/citología , Osteoclastos/patología , Osteoporosis/complicaciones , Osteoporosis/patología , Ligando RANK/metabolismo , Tibia/citología , Tibia/diagnóstico por imagen , Tibia/patología , Microtomografía por Rayos XRESUMEN
As an indispensable, even lifesaving practice, red blood cell (RBC) transfusion is challenging due to several issues, including supply shortage, immune incompatibility, and blood-borne infections since donated blood is the only source of RBCs. Although large-scale in vitro production of functional RBCs from human stem cells is a promising alternative, so far, no such system has been reported to produce clinically transfusable RBCs due to the poor understanding of mechanisms of human erythropoiesis, which is essential for the optimization of in vitro erythrocyte generation system. We previously reported that inhibition of mammalian target of rapamycin (mTOR) signaling significantly decreased the percentage of erythroid progenitor cells in the bone marrow of wild-type mice. In contrast, rapamycin treatment remarkably improved terminal maturation of erythroblasts and anemia in a mouse model of ß-thalassemia. In the present study, we investigated the effect of mTOR inhibition with rapamycin from different time points on human umbilical cord blood-derived CD34+ cell erythropoiesis in vitro and the underlying mechanisms. Our data showed that rapamycin treatment significantly suppressed erythroid colony formation in the commitment/proliferation phase of erythropoiesis through inhibition of cell-cycle progression and proliferation. In contrast, during the maturation phase of erythropoiesis, mTOR inhibition dramatically promoted enucleation and mitochondrial clearance by enhancing autophagy. Collectively, our results suggest contrasting roles for mTOR in regulating different phases of human erythropoiesis.
Asunto(s)
Antígenos CD34/metabolismo , Eritropoyesis/genética , Sangre Fetal/fisiología , Serina-Treonina Quinasas TOR/genética , Animales , Humanos , Ratones , Transducción de SeñalRESUMEN
In this study, we isolated and determined the complete genome sequence of a novel mitovirus, "Botryosphaeria dothidea mitovirus 2" (BdMV2), from the phytopathogenic fungus Botryosphaeria dothidea isolate DT-5. BdMV2 has a genome 2,482 nt in length with an A+U content of 67%. The genome of BdMV2 contains a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) of 717 amino acids (aa) with a molecular mass of 81.86 kDa. A BLASTp comparison of the RdRp sequence showed the highest identity (66.67%) with that of Alternaria arborescens mitovirus 1 (AbMV1). Sequence comparisons and phylogenetic analysis revealed that BdMV2 is a new member of the genus Mitovirus of the family Mitoviridae.
Asunto(s)
Ascomicetos/virología , Virus Fúngicos/clasificación , Enfermedades de las Plantas/microbiología , Virus ARN/clasificación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ascomicetos/aislamiento & purificación , Secuencia de Bases , Virus Fúngicos/genética , Genoma Viral/genética , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/virología , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Rosaceae/microbiología , Rosaceae/virología , Proteínas Virales/genéticaRESUMEN
The GATA proteins, functioning as transcription factors (TFs), are involved in multiple plant physiological and biochemical processes. In this study, 28 GATA TFs of Brachypodium distachyon (BdGATA) were systematically characterized via whole-genome analysis. BdGATA genes unevenly distribute on five chromosomes of B. distachyon and undergo purifying selection during the evolution process. The putative cis-acting regulatory elements and gene interaction network of BdGATA were found to be associated with hormones and defense responses. Noticeably, the expression profiles measured by quantitative real-time PCR indicated that BdGATA genes were sensitive to methyl jasmonate (MeJA) and salicylic acid (SA) treatment, and 10 of them responded to invasion of the fungal pathogen Magnaporthe oryzae, which causes rice blast disease. Genome-wide characterization, evolution, and expression profile analysis of BdGATA genes can open new avenues for uncovering the functions of the GATA genes family in plants and further improve the knowledge of cellular signaling in plant defense.