Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(8): 3829-3895, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38436202

RESUMEN

Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.

2.
Theor Appl Genet ; 137(1): 20, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221593

RESUMEN

KEY MESSAGE: A novel super compact mutant, scp-3, was identified using map-based cloning in cucumber. The CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase was the candidate gene of scp-3. Mining dwarf genes is important in understanding stem growth in crops. However, only a small number of dwarf genes have been cloned or characterized. Here, we characterized a cucumber (Cucumis sativus L.) dwarf mutant, super compact 3 (scp-3), which displays shortened internodes and dark green leaves with a wrinkled appearance. The photosynthetic rate of scp-3 is significantly lower than that of the wild type. The dwarf phenotype of scp-3 mutant can be partially rescued by the exogenous brassinolide (BL) application, and the endogenous brassinosteroids (BRs) levels in the scp-3 mutant were significantly lower compared to the wild type. Microscopic examination revealed that the reduced internode length in scp-3 resulted from a decrease in cell size. Genetic analysis showed that the dwarf phenotype of scp-3 was controlled by a single recessive gene. Combined with bulked segregant analysis and map-based cloning strategy, we delimited scp-3 locus into an 82.5 kb region harboring five putative genes, but only one non-synonymous mutation (A to T) was discovered between the mutant and its wild type in this region. This mutation occurred within the second exon of the CsGy4G017510 gene, leading to an amino acid alteration from Leu156 to His156. This gene encodes the CsDWF7 protein, an analog of the Arabidopsis DWF7 protein, which is known to be involved in the biosynthesis of BRs. The CsDWF7 protein was targeted to the cell membrane. In comparison to the wild type, scp-3 exhibited reduced CsDWF7 expression in different tissues. These findings imply that CsDWF7 is essential for both BR biosynthesis as well as growth and development of cucumber plants.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Esteroles , Mapeo Cromosómico , Genes de Plantas , Mutación , Fenotipo , Ácido Graso Desaturasas/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
3.
Org Biomol Chem ; 22(33): 6695-6698, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39106103

RESUMEN

Addressing the challenge of constructing multi-substituted dihydropyrans, we present an efficient synthesis method for oxygen-containing heterocycles. Using thiones and metal carbenes, we employed xanthate and triazole to intramolecularly synthesize dihydropyran or dihydrofuran compounds. 1,2-Hydride migration was inhibited, and thiodihydropyrans were obtained in excellent yields. A mechanism proceeding through a Rh-carbene intermediate is proposed for the multi-substituted dihydropyrans synthesis.

4.
Bioorg Chem ; 153: 107779, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39236583

RESUMEN

To facilitate the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we synthesized three series of derivatives by introducing phenyl pyrazole fragments into the structure of pyrazol-4-yl amides. The results of the bioactivity assay showed that most of the target compounds possessed varying degrees of inhibitory activity against the tested fungi. At a concentration of 100 mg/L, the compound B8 exhibited effective protective activity against S. sclerotiorum in vivo. Molecular docking analysis and succinate dehydrogenase (SDH) inhibition assay indicated that B8 was not a potential SDHI. The preliminary antifungal mechanism of studies showed that B8 induced a large amount of reactive oxygen species (ROS) and severe lipid peroxidation damage in S. sclerotiorum mycelium, resulting in mycelial rupture and disruption of the integrity of the cell membrane and leakage of soluble proteins, soluble sugars and nucleic acids. Further transcriptome analysis showed that compound B8 blocked various metabolic pathways by downregulating the differentially expressed genes (DEGs) catalase, disrupting hydrogen peroxide hydrolysis, accelerating membrane oxidative damage, and upregulating neutral ceramidase, accelerating sphingolipid metabolism to disrupt cell membrane structure and cell proliferation and differentiation, potentially accelerating cell death. The above results indicated that the potential target of these dis-pyrazole carboxamide derivatives may be the cell membrane of pathogenic fungi.

5.
Clin Oral Implants Res ; 35(3): 350-357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38174662

RESUMEN

OBJECTIVES: To compare the accuracy of immediate implant placement of cylindrical implants (CI) and tapered implants (TI) of different lengths using a robotic dental implant system. MATERIALS AND METHODS: CI and TI of three lengths (8, 10, and 12 mm) each were digitally planned and placed in a three-dimensional printed extraction socket model under robotic guidance. There were six groups with three samples in each group, resulting in a total of 18 samples. Implant angular deviation, platform point deviation (total, lateral, depth), and implant apical point deviation (total, lateral, depth) were recorded and compared between the different groups. RESULTS: The angular deviations for CI 8 mm, CI 10 mm, CI 12 mm, TI 8 mm, TI 10 mm, and TI 12 mm were 1.32° ± 0.19°, 1.03° ± 0.56°, 1.31° ± 0.38°, 1.27° ± 0.64°, 1.10° ± 0.43° and 1.05° ± 0.45°, respectively. The total deviations of platform and apical points for CI 8 mm, CI 10 mm, CI 12 mm, TI 8 mm, TI 10 mm, and TI 12 mm were 0.79 ± 0.18 mm, 0.77 ± 0.33 mm; 0.64 ± 0.21 mm, 0.55 ± 0.17 mm; 0.64 ± 0.37 mm, 0.65 ± 0.34 mm; 0.68 ± 0.26 mm, 0.71 ± 0.20 mm; 0.70 ± 0.12 mm, 0.66 ± 0.23 mm; and 0.71 ± 0.15 mm, 0.77 ± 0.29 mm, respectively, and had no significant differences. CONCLUSIONS: Within the limitation of this study, acceptable accuracy can be achieved for both TI and CI using robotic systems. Our study demonstrated that the implant shape and length did not affect the accuracy of immediate implant placement under robotic guidance in vitro. However, further trials are required to confirm their efficacy in clinical practice.


Asunto(s)
Implantes Dentales , Procedimientos Quirúrgicos Robotizados , Robótica , Cirugía Asistida por Computador , Implantación Dental Endoósea/métodos , Cirugía Asistida por Computador/métodos , Tomografía Computarizada de Haz Cónico/métodos , Diseño Asistido por Computadora , Imagenología Tridimensional/métodos
6.
BMC Ophthalmol ; 24(1): 448, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402486

RESUMEN

BACKGROUND: This study aimed to investigate the effect of laser peripheral iridotomy (LPI) on intraocular lens (IOL) power in patients with primary angle closure disease (PACD), and to construct mathematical models to assess changes in IOL power. METHODS: This study included 58 eyes of PACD patients. IOL Master700 was used to analyze and compare the changes of IOL power and ocular related parameters in each formula before and after LPI. The number of cases with IOL power changes greater than 0.5 diopters (D) in each group were counted and significant differences were analyzed using Fisher's exact test. Pearson's linear correlation analysis was used to ascertain the relationship between IOL power changes and ocular parameter changes to establish mathematical models. RESULTS: No significant difference was found in calculated IOL power changes before and after LPI in each group. There was significant difference in the number of cases with IOL change values greater than 0.5D between the primary angle closure glaucoma (PACG) and the other two groups for each formula. IOL power changes were mainly associated with △K and △AL. Mathematical models of IOL power changes after LPI were constructed based on linear regression analysis.(PAC group: △IOLHaigis=0.026-2.950×△AL-1.414×△K, △IOLHoffer Q=-3.578×△AL-1.412×△K, △IOLSRK/T=-3.152×△AL-1.114×△K, △IOLHolladay 1=-3.405×△AL-1.291×△K, △IOLHolladay 2=-3.467×△AL-1.483×△K, △IOLBUII=-3.185×△AL-1.301×△K; PACG group:△IOLHaigis=-1.632×△K, △IOLHoffer Q=-3.770×△AL-1.434×△K, △IOLSRK/T=-3.427×△AL-1.102×△K, △IOLHolladay 1=-3.625×△AL-1.278×△K, △IOLHolladay 2=-4.764×△AL-1.272×△K, △IOLBUII=-4.935×△AL-1.304×△K). CONCLUSIONS: LPI will cause changes in some ocular parameters in patients with PACD, with great effects on IOL power calculations was observed in patients with PACG. Mathematical models based on multivariate analysis hold promise for predicting IOL power changes subsequent to LPI.


Asunto(s)
Glaucoma de Ángulo Cerrado , Presión Intraocular , Iridectomía , Iris , Terapia por Láser , Lentes Intraoculares , Humanos , Glaucoma de Ángulo Cerrado/cirugía , Glaucoma de Ángulo Cerrado/fisiopatología , Femenino , Masculino , Terapia por Láser/métodos , Iridectomía/métodos , Persona de Mediana Edad , Iris/cirugía , Anciano , Presión Intraocular/fisiología , Agudeza Visual/fisiología , Análisis Multivariante , Refracción Ocular/fisiología , Implantación de Lentes Intraoculares , Estudios Retrospectivos , Óptica y Fotónica
7.
Clin Oral Investig ; 28(9): 515, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235538

RESUMEN

OBJECTIVES: To assess the accuracy and effectiveness among operators with different levels of experience in a robot-assisted immediate implant surgery. MATERIALS AND METHODS: The study included four participants who had received dental training at the same institution but have varying levels of clinical experience in implant dentistry, denoted as undergraduate student (UG), dental resident (DR), specialist with no robot experience (IS) and specialist with robot experience (RS). Following comprehensive theoretical training in robot-assisted implant operation, each operator participated in five robotic-assisted implant procedures at 21 sites, resulting in the implant surgery of a total of 20 implants. Subsequently, the accuracy of the implants was assessed by analyzing the preoperative planning and the postoperative CBCT scans, and the time required for each procedure was also recorded. RESULTS: Angular deviation in UG, DR, IS and RS group was 0.82 ± 0.27°, 0.55 ± 0.27°, 0.83 ± 0.27°, and 0.56 ± 0.36°, respectively. The total deviation of the implant platform point was 0.28 ± 0.10 mm, 0.26 ± 0.16 mm, 0.34 ± 0.08 mm and 0.31 ± 0.06 mm, respectively. The total deviation of the apical point was 0.30 ± 0.08 mm, 0.25 ± 0.18 mm, 0.31 ± 0.09 mm, and 0.31 ± 0.05 mm, respectively. The time spent was 10.37 ± 0.57 min, 10.56 ± 1.77 min, 9.93 ± 0.78 min, and 11.76 ± 0.78 min for each operator. As the number of operations increased, the operation time decreased, but there was no significant difference in implant accuracy between the different groups. CONCLUSIONS: Within the scope of this study, robot-assisted implant surgery demonstrated high accuracy, with no significant differences in performance between operators with varying levels of clinical experience or implant robot-user experience. Furthermore, the learning curve for robotic implant surgery is steep and consistent. CLINICAL RELEVANCE: Robot-assisted implant surgery demonstrates consistent high accuracy across operators of varying clinical and robotic experience levels, highlighting its potential to standardize procedures and enhance predictability in clinical outcomes.


Asunto(s)
Competencia Clínica , Tomografía Computarizada de Haz Cónico , Carga Inmediata del Implante Dental , Procedimientos Quirúrgicos Robotizados , Humanos , Técnicas In Vitro , Implantes Dentales , Implantación Dental Endoósea/métodos
8.
Bioorg Chem ; 134: 106467, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933337

RESUMEN

Ginsenosides are a promising group of secondary metabolites for developing anti-inflammatory agents. In this study, Michael acceptor was fused into the aglycone A-ring of protopanoxadiol (PPD)-type ginsenosides (MAAG), the main pharmacophore of ginseng, and its liver metabolites to produce novel derivatives and assess their anti-inflammatory activity in vitro. The structure-activity relationship of MAAG derivatives was assessed based on their NO-inhibition activities. Of these, a 4-nitrobenzylidene derivative of PPD (2a) was the most effective and dose-dependently inhibited the release of proinflammatory cytokines. Further studies indicated that 2a-induced downregulation on lipopolysaccharide (LPS)-induced iNOS protein expression and cytokine release may be related to its inhibitory effect on MAPK and NF-κB signaling pathways. Importantly, 2a almost completely inhibited LPS-induced production of mitochondrial reactive oxygen species (mtROS) and LPS-induced NLRP3 upregulation. This inhibition was higher than that by hydrocortisone sodium succinate, a glucocorticoid drug. Overall, the fusion of Michael acceptors into the aglycone of ginsenosides greatly enhanced the anti-inflammatory activities of the derivatives, and 2a alleviated inflammation considerably. These findings could be attributed to the inhibition of LPS-induced mtROS to block abnormal activation of the NLRP3 pathway.


Asunto(s)
Ginsenósidos , Proteína con Dominio Pirina 3 de la Familia NLR , Ginsenósidos/farmacología , Ginsenósidos/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Transducción de Señal , Citocinas/metabolismo
9.
Clin Oral Implants Res ; 34(6): 555-564, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36847706

RESUMEN

BACKGROUND: While suggested to be effective in tissue regeneration, the effects of horizontal platelet-rich fibrin (H-PRF) bone block in sinus augmentation have not been verified in an animal model. METHODS: A total of 12 male New Zealand white rabbits that underwent sinus augmentation were divided into two groups: deproteinized bovine bone mineral (DBBM) only and H-PRF bone block. H-PRF was prepared at 700 × g for 8 min using a horizontal centrifuge. The H-PRF bone block was prepared by mixing 0.1 g DBBM with H-PRF fragments and then adding liquid H-PRF. Samples were collected after 4 and 8 weeks and analyzed using microcomputed tomography (micro-CT) for vertical bone gain of the sinus, bone volume/total volume (BV/TV) percentage, trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). Then, histological analyses were performed to investigate new blood vessels, material residue, bone formation and osteoclasts. RESULTS: Higher vertical bone gain of the sinus floor, BV/TV percentage, Tb.Th, and Tb.N and lower Tb.Sp were found in the H-PRF bone block group at both time points compared with the DBBM group. Higher amounts of new blood vessels and more osteoclasts were found in the H-PRF bone block group than in the DBBM group at both time points, especially in the regions close to the bone plate. More new bone formation and less material residue were observed in the H-PRF bone block group at 8 weeks. CONCLUSIONS: H-PRF bone block showed greater potential for sinus augmentation by promoting angiogenesis, bone formation and bone remodeling in a rabbit model.


Asunto(s)
Sustitutos de Huesos , Fibrina Rica en Plaquetas , Elevación del Piso del Seno Maxilar , Masculino , Animales , Bovinos , Conejos , Seno Maxilar/diagnóstico por imagen , Seno Maxilar/cirugía , Elevación del Piso del Seno Maxilar/métodos , Microtomografía por Rayos X , Sustitutos de Huesos/farmacología , Sustitutos de Huesos/uso terapéutico , Regeneración Ósea
10.
Clin Oral Investig ; 27(1): 399-409, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36242639

RESUMEN

OBJECTIVES: Platelet-rich fibrin (PRF) in liquid form has shown advantages in tissue engineering including acting as injectable fillers and drug carriers. However, few studies have investigated the best relative centrifugal force (RCF) for preparing liquid PRF. The aim of the present study was to find out optimal centrifugation force for preparing liquid PRF. MATERIALS AND METHODS: Liquid PRF was prepared using horizontal centrifugation (liquid H-PRF) with RCF ranging from 100 g, 300 g, 500 g, to 700 g for 8 min. The volume, weight, solidification time, and tensile properties were subsequently investigated. Scanning electron microscopy (SEM) and rheologic tests were carried out to investigate the microstructure and rheologic properties of liquid H-PRF after natural polymerization. The total number, concentration, and distribution of cells within each liquid H-PRF was evaluated by complete blood count (CBC) analysis and hematoxylin-eosin staining. RESULTS: As RCF values increased, the volume and weight of liquid H-PRF both increased accordingly. SEM images revealed that as the centrifugal force increased, the fibrin bundles became thinner with a denser fibrin network, and rheologic tests revealed improved mechanical properties. CBC analysis demonstrated that 500 g group had the highest number of leukocytes and neutrophils, whereas 100 g group yielded the highest concentration of leukocytes and platelets. Furthermore, histological analysis suggests that cells obtained by 500 g for 8 min were most evenly distributed in liquid H-PRF. CONCLUSIONS: In summary, the present study provided insights into the contents of liquid H-PRF prepared at different centrifugation forces, enabling clinicians to choose proper centrifugation forces based on their needs. CLINICAL RELEVANCE: The present findings provide theoretical basis for clinical choice of liquid H-PRF protocol from mechanical, cell contents, and histological aspects.


Asunto(s)
Fibrina Rica en Plaquetas , Leucocitos , Plaquetas , Centrifugación/métodos , Fibrina
11.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770974

RESUMEN

Pyxinol skeleton is a promising framework of anti-inflammatory agents formed in the human liver from 20S-protopanaxadiol, the main active aglycone of ginsenosides. In the present study, a new series of amino acid-containing derivatives were produced from 12-dehydropyxinol, a pyxinol oxidation metabolite, and its anti-inflammatory activity was assessed using an NO inhibition assay. Interestingly, the dehydrogenation at C-12 of pyxinol derivatives improved their potency greatly. Furthermore, half of the derivatives exhibited better NO inhibitory activity than hydrocortisone sodium succinate, a glucocorticoid drug. The structure-activity relationship analysis indicated that the kinds of amino acid residues and their hydrophilicity influenced the activity to a great extent, as did R/S stereochemistry at C-24. Of the various derivatives, 5c with an N-Boc-protected phenylalanine residue showed the highest NO inhibitory activity and relatively low cytotoxicity. Moreover, derivative 5c could dose-dependently suppress iNOS, IL-1ß, and TNF-α via the MAPK and NF-κB pathways, but not the GR pathway. Overall, pyxinol derivatives hold potential for application as anti-inflammatory agents.


Asunto(s)
Antiinflamatorios , Ginsenósidos , Humanos , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Relación Estructura-Actividad , Ginsenósidos/farmacología , Lipopolisacáridos
12.
J Basic Microbiol ; 62(6): 740-749, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35199357

RESUMEN

Phosphoglucose isomerase (PGI) is a key enzyme that participates in polysaccharide synthesis, which is responsible for the interconversion of glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P), but there is little research focusing on its role in fungi, especially in higher basidiomycetes. The pgi gene was cloned from Lentinula edodes and named lepgi. Then, the lepgi-silenced strains were constructed by RNA interference. In this study, we found that lepgi-silenced strains had significantly less biomass than the wild-type (WT) strain. Furthermore, the extracellular polysaccharide (EPS) and intracellular polysaccharide (IPS) levels increased 1.5- to 3-fold and 1.5-fold, respectively, in lepgi-silenced strains. Moreover, the cell wall integrity in the silenced strains was also altered, which might be due to changes in the compounds and structure of the cell wall. The results showed that compared to WT, silencing lepgi led to a significant decrease of approximately 40% in the ß-1,3-glucan content, and there was a significant increase of 2-3-fold in the chitin content. These findings provide support for studying the biological functions of lepgi in L. edodes.


Asunto(s)
Hongos Shiitake , Pared Celular , Clonación Molecular , Glucosa-6-Fosfato Isomerasa/genética , Polisacáridos , Hongos Shiitake/genética
13.
Nano Lett ; 21(19): 7970-7978, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34605652

RESUMEN

The performance of single-atom catalysts strongly depends on their particular coordination environments in the near-surface region. Herein, we discover that engineering extra Pt single atoms in the subsurface (Ptsubsurf) can significantly enhance the catalytic efficiency of surface Pt single atoms toward the oxygen reduction reaction (ORR). We experimentally and theoretically investigated the effects of the Ptsubsurf single atoms implanted in different positions of the subsurface of Co particles. The local environments and catalytic properties of surface Pt1 are highly tunable via Ptsubsurf doping. Specifically, the obtained Pt1@Co/NC catalyst displays a remarkable performance for ORR, achieving mass activity of 4.2 mA µgPt-1 (28 times higher than that of commercial Pt/C) at 0.9 V versus reversible hydrogen electrode (RHE) in 0.1 M HClO4 solution with high stability over 30000 cycles.

14.
Angew Chem Int Ed Engl ; 61(42): e202212666, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36056534

RESUMEN

Aqueous Zn-S battery with high energy density represents a promising large-scale energy storage technology, but its application is severely hindered by the poor reversibility of both S cathode and Zn anode. Herein, we develop a "cocktail optimized" electrolyte containing tetraglyme (G4) and water as co-solvents and I2 as additive. The G4-I2 synergy could activate efficient polar I3 - /I- catalyst couple and shield the cathode from water, thus facilitating the conversion kinetics of S and suppressing the interfacial side reactions. Simultaneously, it could stabilize Zn anode by forming an organic-inorganic interphase upon cycling. With boosted electrodes reversibility, the Zn-S cell delivers a high capacity of 775 mAh g-1 at 2 A g-1 , and retains over 70 % capacity after 600 cycles at 4 A g-1 . The advances can also be readily generalized to other ethers/water hybrid electrolytes, showing the universality of the "cocktail optimized" electrolyte design strategy.

15.
Angew Chem Int Ed Engl ; 61(16): e202200384, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35119192

RESUMEN

It is vital to dynamically regulate S activity to achieve efficient and stable room-temperature sodium-sulfur (RT/Na-S) batteries. Herein, we report using cobalt sulfide as an electron reservoir to enhance the activity of sulfur cathodes, and simultaneously combining with cobalt single atoms as double-end binding sites for a stable S conversion process. The rationally constructed CoS2 electron reservoir enables the straight reduction of S to short-chain sodium polysulfides (Na2 S4 ) via a streamlined redox path through electron transfer. Meanwhile, cobalt single atoms synergistically work with the electron reservoir to reinforce the streamlined redox path, which immobilize in situ formed long-chain products and catalyze their conversion, thus realizing high S utilization and sustainable cycling stability. The as-developed sulfur cathodes exhibit a superior rate performance of 443 mAh g-1 at 5 A g-1 with a high cycling capacity retention of 80 % after 5000 cycles at 5 A g-1 .

16.
Environ Microbiol ; 23(8): 4405-4417, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34097348

RESUMEN

The cell wall integrity (CWI) signaling activates the transcription factor Swi6 through a MAPK signaling cascade in response to cell wall stresses. In this study, we observed two different mRNA variants of swi6 (GlSwi6A and GlSwi6B) existed, due to alternative splicing. Besides, the expression level of GlSwi6B was higher than that of the GlSwi6A mRNA variant. The co-silencing of GlSwi6A and GlSwi6B was more sensitive to cell wall stress compared with WT, resulting in a decrease of 78% and 76% in chitin and ß-1,3-d-glucan content respectively. However, only the overexpression of GlSwi6B decreased the sensitivity to cell wall stress and increased the content of chitin and ß-1,3-d-glucan compared with the WT strain. Furthermore, Y1H, EMSA and BLI assays revealed that the GlSwi6B could bind to the promoters of chitin and glucan synthesis genes (GL24454 and GL18134). However, the binding phenome has not been observed in the isoform GlSwi6A. Taken together, our results found two different transcripts generated from Swi6, in which the alternative splice isoform of GlSwi6B participates in regulating the CWI of G. lucidum. This study provides the first insight into the alternative splicing isoform of GlSwi6B in the regulation of CWI signaling in fungi.


Asunto(s)
Reishi , Empalme Alternativo/genética , Pared Celular/genética , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reishi/metabolismo
17.
Small ; 17(48): e2006504, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33908696

RESUMEN

Alkali-metal/sulfur batteries hold great promise for offering relatively high energy density compared to conventional lithium-ion batteries. By providing viable sulfur composites that can be effectively used, carbonaceous hosts as a key component play critical roles in overcoming the preliminary challenges associated with the insulating sulfur and its relatively soluble polysulfides. Herein, a comprehensive overview and recent progress on carbonaceous hosts for advanced next-generation alkali-metal/sulfur batteries are presented. In order to encapsulate the highly active sulfur mass and fully limit polysulfide dissolution, strategies for tailoring the design and synthesis of carbonaceous hosts are summarized in this work. The sticking points that remain for sulfur cathodes in current alkali-metal/sulfur systems and the future remedies that can be provided by carbonaceous hosts are also indicated, which can lead to long cycling lifetimes and highly reversible capacities under repeated sulfur reduction reactions in alkali-metal/sulfur during cycling.

18.
Small ; 17(26): e2100732, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34080772

RESUMEN

The rational synthesis of single-layer noble metal directly anchored on support materials is an elusive target to accomplish for a long time. This paper reports well-defined single-layer Pt (Pt-SL) clusters anchored on ultrathin TiO2 nanosheets-as a new frontier in electrocatalysis. The structural evolution of Pt-SL/TiO2 via self-assembly of single Pt atoms (Pt-SA) is systematically recorded. Significantly, the Pt atoms of Pt-SL/TiO2 possess a unique electronic configuration with PtPt covalent bonds surrounded by abundant unpaired electrons. This Pt-SL/TiO2 catalyst presents enhanced electrochemical performance toward diverse electrocatalytic reactions (such as the hydrogen evolution reaction and the oxygen reduction reaction) compared with Pt-SA, multilayer Pt nanoclusters, and Pt nanoparticles, suggesting an efficient new type of catalyst that can be achieved by constructing single-layer atomic clusters on supports.

19.
Plant Mol Biol ; 102(1-2): 1-17, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31655970

RESUMEN

KEY MESSAGE: HbMBF1a was isolated and characterized in H. brevisubulatum, and overexpressed HbMBF1a could enhance the salt tolerance and ABA insensitivity in Arabidopsis thaliana. The transcript levels of stress-responsive genes were significantly increased in the transgenic lines under salt and ABA conditions. Salinity is an abiotic stress that considerably affects plant growth, yield, and distribution. Hordeum brevisubulatum is a halophyte that evolved to become highly tolerant to salinity. Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator and an important regulator of stress tolerance. In this study, we isolated and characterized HbMBF1a based on the transcriptome data of H. brevisubulatum grown under saline conditions. We overexpressed HbMBF1a in Arabidopsis thaliana and compared the phenotypes of the transgenic lines and the wild-type in response to stresses. The results indicated that HbMBF1a expression was induced by salt and ABA treatments during the middle and late stages. The overexpression of HbMBF1a in A. thaliana resulted in enhanced salt tolerance and ABA insensitivity. More specifically, the enhanced salt tolerance manifested as the increased seed germination and seedling growth and development. Similarly, under ABA treatments, the cotyledon greening rate and seedling root length were higher in the HbMBF1a-overexpressing lines, suggesting the transgenic plants were better adapted to high exogenous ABA levels. Furthermore, the transcript levels of stress-responsive genes were significantly increased in the transgenic lines under salt and ABA conditions. Thus, HbMBF1a is a positive regulator of salt and ABA responses, and the corresponding gene may be useful for producing transgenic plants that are salt tolerant and/or ABA insensitive, with few adverse effects. This study involved a comprehensive analysis of HbMBF1a. The results may provide the basis and insight for the application of MBF1 family genes for developing stress-tolerant crops.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Hordeum/metabolismo , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/genética , Transactivadores/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotiledón/metabolismo , Genes de Plantas/genética , Germinación , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/fisiología , Plantas Tolerantes a la Sal/metabolismo , Sales (Química)/farmacología , Plantones/crecimiento & desarrollo , Análisis de Secuencia de ADN , Estrés Fisiológico/genética , Transactivadores/clasificación , Transactivadores/metabolismo , Transcriptoma , Transformación Genética
20.
Small ; 16(20): e2000745, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32329571

RESUMEN

Iron sulfides with high theoretical capacity and low cost have attracted extensive attention as anode materials for sodium ion batteries. However, the inferior electrical conductivity and devastating volume change and interface instability have largely hindered their practical electrochemical properties. Here, ultrathin amorphous TiO2 layer is constructed on the surface of a metal-organic framework derived porous Fe7 S8 /C electrode via a facile atomic layer deposition strategy. By virtue of the porous structure and enhanced conductivity of the Fe7 S8 /C, the electroactive TiO2 layer is expected to effectively improve the electrode interface stability and structure integrity of the electrode. As a result, the TiO2 -modified Fe7 S8 /C anode exhibits significant performance improvement for sodium-ion batteries. The optimal TiO2 -modified Fe7 S8 /C electrode delivers reversible capacity of 423.3 mA h g-1 after 200 cycles with high capacity retention of 75.3% at 0.2 C. Meanwhile, the TiO2 coating is conducive to construct favorable solid electrolyte interphase, leading to much enhanced initial Coulombic efficiency from 66.9% to 72.3%. The remarkable improvement suggests that the interphase modification holds great promise for high-performance metal sulfide-based anode materials for sodium-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA