Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2315168121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683997

RESUMEN

Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Microfluídica/métodos , Análisis de la Célula Individual/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Fenotipo , Línea Celular Tumoral , Inmunoterapia/métodos , Perfilación de la Expresión Génica/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación
2.
Opt Express ; 30(3): 4084-4095, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209653

RESUMEN

Ultra-high quality (Q) factor resonances derived from the bound states in the continuum (BICs) have drawn much attention in optics and photonics. Especially in meta-surfaces, they can enable ultrasensitive sensors, spectral filtering, and lasers because of their enhanced light-matter interactions and rare superiority of scalability. In this paper, we propose a permittivity-asymmetric all-dielectric meta-surface, comprising high-index cuboid tetramer clusters with symmetric structural parameters and configuring periodically on a glass substrate. Simulation results offer dual-band quasi-BICs with high Q values of 4447 and 11391, respectively. Multipolar decomposition in cartesian and electromagnetic distributions are engaged to analyze the physical mechanism of dual quasi-BIC modes, which reveals that they are both governed by magnetic quadrupole (MQ) and in-plane toroidal dipole (TD). The polarization-insensitive and scalable characteristics are also investigated. Additionally, we appraise the sensing performances of the proposed structure. As an example, our work supports an uncommon route to design dual-band polarization-insensitive TD quasi-BICs resonators and facilitates their applications in optic and photonics, such as low-threshold lasers and sensing.

3.
Opt Lett ; 47(15): 3628-3631, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913275

RESUMEN

Nitrogen-polar (N-polar) III-nitride materials have great potential for application in long-wavelength light-emitting diodes (LEDs). However, the poor quality of N-polar nitride materials hinders the development of N-polar devices. In this work, we report the enhanced performance of N-polar GaN-based LEDs with an optimized InGaN/GaN double quantum well (DQW) structure grown by metalorganic chemical vapor deposition. We improved the quality of the N-polar InGaN/GaN DQWs by elevating the growth temperature and introducing hydrogen as the carrier gas during the growth of the quantum barrier layers. N-polar LEDs prepared based on the optimized InGaN/GaN DQWs show significantly enhanced (by over 90%) external quantum efficiency and a weakened droop effect compared with a reference LED. More importantly, the optimized N-polar DQWs show a significantly longer emission wavelength than Ga-polar DQWs grown at the same QW growth temperature. This work provides a feasible approach to improving the quality of the N-polar InGaN/GaN QW structure, and it will promote the development of N-polar GaN-based long-wavelength light-emitting devices for micro-LED displays.

4.
Nano Lett ; 21(11): 4878-4886, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33830766

RESUMEN

The genetic heterogeneities in cancer cells pose challenges to achieving precise drug treatment in a widely applicable manner. Most single-cell gene analysis methods rely on cell lysis for gene extraction and identification, showing limited capacity to provide the correlation of genetic properties and real-time cellular behaviors. Here, we report a single living cell analysis nanoplatform that enables interrogating gene properties and drug resistance in millions of single cells. We designed a Domino-probe to identify intracellular target RNAs while releasing 10-fold amplified fluorescence signals. An on-chip addressable microwell-nanopore array was developed for enhanced electro-delivery of the Domino-probe and in situ observation of cell behaviors. The proof-of-concept of the system was validated in primary lung cancer cell samples, revealing the positive-correlation of the ratio of EGFR mutant cells with their drug susceptibilities. This platform provides a high-throughput yet precise tool for exploring the relationship between intracellular genes and cell behaviors at the single-cell level.


Asunto(s)
Neoplasias Pulmonares , Análisis de la Célula Individual , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación
5.
New Phytol ; 227(1): 65-83, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32129897

RESUMEN

Lamin proteins in animals are implicated in important nuclear functions, including chromatin organization, signalling transduction, gene regulation and cell differentiation. Nuclear Matrix Constituent Proteins (NMCPs) are lamin analogues in plants, but their regulatory functions remain largely unknown. We report that OsNMCP1 is localized at the nuclear periphery in rice (Oryza sativa) and induced by drought stress. OsNMCP1 overexpression resulted in a deeper and thicker root system, and enhanced drought resistance compared to the wild-type control. An assay for transposase accessible chromatin with sequencing (ATAC-seq) analysis revealed that OsNMCP1-overexpression altered chromatin accessibility in hundreds of genes related to drought resistance and root growth, including OsNAC10, OsERF48, OsSGL, SNAC1 and OsbZIP23. OsNMCP1 can interact with SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodelling complex subunit OsSWI3C. The reported drought resistance or root growth-related genes that were positively regulated by OsNMCP1 were negatively regulated by OsSWI3C under drought stress conditions, and OsSWI3C overexpression led to decreased drought resistance. We propose that the interaction between OsNMCP1 and OsSWI3C under drought stress conditions may lead to the release of OsSWI3C from the SWI/SNF gene silencing complex, thus changing chromatin accessibility in the genes related to root growth and drought resistance.


Asunto(s)
Oryza , Cromatina , Sequías , Regulación de la Expresión Génica de las Plantas , Laminas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética
6.
Materials (Basel) ; 17(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124456

RESUMEN

Direct ink writing (DIW) of high-temperature thin-film sensors holds significant potential for monitoring extreme environments. However, existing high-temperature inks face a trade-off between cost and performance. This study proposes a SiCN/RuO2/TiB2 composite ceramic ink. The added TiB2, after annealing in a high-temperature atmospheric environment, forms B2O3 glass, which synergizes with the SiO2 glass phase formed from the SiCN precursor to effectively encapsulate RuO2 particles. This enhances the film's density and adhesion to the substrate, preventing RuO2 volatilization at high temperatures. Additionally, the high conductivity of TiB2 improves the film's overall conductivity. Test results indicate that the SiCN/RuO2/TiB2 film exhibits high linearity from room temperature to 900 °C, high stability (resistance drift rate of 0.1%/h at 800 °C), and high conductivity (4410 S/m). As a proof of concept, temperature sensors and a heat flux sensor were successfully fabricated on a metallic hemispherical surface. Performance tests in extreme environments using high-power lasers and flame guns verified that the conformal thin-film sensor can accurately measure spherical temperature and heat flux, with a heat flux sensor response time of 53 ms. In conclusion, the SiCN/RuO2/TiB2 composite ceramic ink developed in this study offers a high-performance and cost-effective solution for high-temperature conformal thin-film sensors in extreme environments.

7.
Nat Commun ; 15(1): 6763, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117687

RESUMEN

Solar-driven flat-panel H2O-to-H2 conversion is an important technology for value-added solar fuel production. However, most frequently used particulate photocatalysts are hard to achieve stable photocatalysis in flat-panel reaction module due to the influence of mechanical shear force. Herein, a highly active CdS@SiO2-Pt composite with rapid CdS-to-Pt electron transfer and restrained photoexciton recombination was prepared to process into an organic-inorganic membrane by compounding with polyvinylidene fluoride (PVDF). This PVDF networked organic-inorganic membrane displays high photostability and excellent operability, achieving improved simulated sunlight-driven alkaline H2O-to-H2 conversion activity (213.48 mmol m-2 h-1) following a 0.68% of solar-to-hydrogen efficiency. No obvious variation in its appearance and micromorphology was observed even being recycled for 50-times, which considerably outperforms the existing membrane photocatalysts. Subsequently, a homemade panel H2O-to-H2 conversion system was fabricated to obtain a 0.05% of solar-to-hydrogen efficiency. In this study, we opens up a prospect for practical application of photocatalysis technology.

8.
Biosens Bioelectron ; 250: 116096, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316089

RESUMEN

Fast and accurate detection of Cryptococcus and precise differentiation of its subtypes is of great significance in protecting people from cryptococcal disease and preventing its spread in populations. However, traditional Cryptococcus identification and detection techniques still face significant challenges in achieving high analysis speed as well as high sensitivity. In this work, we report an electric microfluidic biochip. Compared to conventional methods that take several hours or even a day, this chip can detect Cryptococcus within 20 min, and achieve its maximum detection limit within 1 h, with the ability to differentiate between the Cryptococcus neoformans (NEO) and rare Cryptococcus gattii (GAT) efficiently, which accounts for nearly 100%. This device integrated two functional zones of an electroporation lysis (EL) zone for rapid cell lysis (<30 s) and an electrochemical detection (ED) zone for sensitive analysis of the released nucleic acids. The EL zone adopted a design of microelectrode arrays, which obtains a large electric field intensity at the constriction of the microchannel, addressing the safety concerns associated with high-voltage lysis. The device enables a limit of detection (LOD) of 60 pg/mL for NEO and 100 pg/mL for GAT through the modification of nanocomposites and specific probes. In terms of the detection time and sensitivity, the integrated microfluidic biochip demonstrates broad potential in Cryptococcus diagnosis and disease prevention.


Asunto(s)
Técnicas Biosensibles , Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Criptococosis/diagnóstico
9.
Artículo en Inglés | MEDLINE | ID: mdl-37976965

RESUMEN

Family selection is an important method in fish aquaculture because growth is the most important economic trait. Fast-and slow-growing families of tiger puffer fish (Takifugu rubripes) have been established through family selection. The development of teleost fish is primarily controlled by the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis that includes the hypothalamus-pituitary-liver. In this study, the molecular mechanisms underlying T. rubripes growth were analyzed by comparing transcriptomes from fast- and slow-growing families. The expressions of 214 lncRNAs were upregulated, and those of 226 were downregulated in the brain tissues of the fast-growing T. rubripes family compared to those of the slow-growing family. Differentially expressed lncRNAs centrally regulate mitogen-activated protein kinase (MAPK) and forkhead box O (FoxO) signaling pathways. Based on the results of lncRNA-gene network construction, we found that lncRNA3133.13, lncRNA23169.1, lncRNA23145.1, and lncRNA23141.3 regulated all four genes (igf1, mdm2, flt3, and cwf19l1). In addition, lncRNA7184.10 may be a negative regulator of rasgrp2 and a positive regulator of gadd45ga, foxo3b, and dusp5. These target genes are associated with the growth and development of organisms through the PI3K/AKT and MAPK/ERK pathways. Overall, transcriptomic analyses of fast- and slow-growing families of T. rubripes provided insights into the molecular mechanisms of teleost fish growth rates. Further, these analyses provide evidence for key genes related to growth regulation and the lncRNA expression regulatory network that will provide a framework for improving puffer fish germplasm resources.


Asunto(s)
ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , Takifugu/genética , Takifugu/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
10.
Int Immunopharmacol ; 132: 111970, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608472

RESUMEN

OBJECTIVES: As antibiotics become more prevalent, accuracy and safety are critical. Moxifloxacin (MXF) have been reported to have immunomodulatory effects on a variety of immune cells and even anti-proliferative and pro-apoptotic effects, but the mechanism of action is not fully clear. METHODS: Peripheral blood mononuclear cells (PBMC) from experimental groups of healthy adults (n = 3) were treated with MXF (10ug/ml) in vitro for 24 h. Single-cell sequencing was performed to investigate differences in the response of each immune cell to MXF. Flow cytometry determined differential gene expression in subsets of most damaged NK cells. Pseudo-time analysis identified drivers that influence MXF-stimulated cell differentiation. Detection of mitochondrial DNA and its involvement in the mitochondrial respiratory chain pathway clarifies the origin of MXF-induced stress injury. RESULTS: Moxifloxacin-environmental NK cells are markedly reduced: a new subset of NK cells emerges, and immediate-early-response genes in this subset indicate the presence of an early activation response. The inhibitory receptor-dominant subset shows enhanced activation, leading to increased expression of cytokines and chemokines. The near-mature subset showed greater cytotoxicity and the most pronounced cellular damage. CD56bright cells responded by antagonizing the regulation of activation and inhibitory signals, demonstrating a strong cleavage capacity. The severe depletion of mitochondrial genes was focused on apoptosis induced by the mitochondrial respiratory chain complex. CONCLUSION: NK cells exhibit heightened sensitivity to the MXF environment. Different NK subsets upregulate the expression of cytokines and chemokines through different activation pathways. Concurrently, MXF induces impairment of the mitochondrial oxidative phosphorylation system, culminating in apoptosis.


Asunto(s)
Apoptosis , ADN Mitocondrial , Células Asesinas Naturales , Moxifloxacino , Moxifloxacino/farmacología , Humanos , Apoptosis/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Adulto , Células Cultivadas , Citocinas/metabolismo , Antibacterianos/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino
11.
Biosens Bioelectron ; 242: 115753, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839351

RESUMEN

Precise quantification of low-dose ionizing radiation is of great significance in protecting people from damage caused by clinical radiotherapy or environmental radiation. Traditional techniques for detecting radiation, however, remain extreme challenges to achieve high sensitivity and speed in quantifying radiation dosage. In this work, we report a Cas13a-Microdroplet platform that enables sensitive detection of ultra-low doses of radiation (0.5 Gy vs. 1 Gy traditional) within 1 h. The micro-platform adopts an ideal, specific radiation-sensitive marker, m6A on NCOA4 gene (NCOA4-m6A) that was first reported in our recent work. Microfluidics of the platform generate uniform microdroplets that encapsulate a CRISPR/Cas13a detection system and NCOA4-m6A target from the whole RNA extraction, achieving 10-fold enhancement in sensitivity and significantly reduced limit of detection (LOD). Systematic mouse models and clinical patient samples demonstrated its superior sensitivity and LOD (0.5 Gy) than traditional qPCR, which show wide potentials in radiation tracking and damage protection.


Asunto(s)
Técnicas Biosensibles , Animales , Ratones , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Límite de Detección , Dosis de Radiación , Factores de Transcripción , Coactivadores de Receptor Nuclear
12.
Top Curr Chem ; 317: 83-114, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21647837

RESUMEN

Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade. We review here how we have used highly structure-driven fragment-based approaches to complement more traditional lead discovery to tackle high priority targets and those struggling for leads. Combining biomolecular nuclear magnetic resonance (NMR), X-ray crystallography, and molecular modeling with structure-assisted chemistry and innovative biology as an integrated approach for FBDD can solve very difficult problems, as illustrated in this chapter. Here, a successful FBDD campaign is described that has allowed the development of a clinical candidate for BACE-1, a challenging CNS drug target. Crucial to this achievement were the initial identification of a ligand-efficient isothiourea fragment through target-based NMR screening and the determination of its X-ray crystal structure in complex with BACE-1, which revealed an extensive H-bond network with the two active site aspartate residues. This detailed 3D structural information then enabled the design and validation of novel, chemically stable and accessible heterocyclic acylguanidines as aspartic acid protease inhibitor cores. Structure-assisted fragment hit-to-lead optimization yielded iminoheterocyclic BACE-1 inhibitors that possess desirable molecular properties as potential therapeutic agents to test the amyloid hypothesis of Alzheimer's disease in a clinical setting.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Resonancia Magnética Nuclear Biomolecular , Bibliotecas de Moléculas Pequeñas/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
13.
Biosens Bioelectron ; 210: 114281, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35487136

RESUMEN

Probing nuclear protein expression while correlating cellular behavior is crucial for deciphering underlying causes of cellular disorders, such as tumor metastasis. Despite efforts to access nuclear proteins by trafficking the double barriers of cell membrane and nuclear membrane, they mostly fall short of the capacity for analyzing various proteins in different cells. Herein, we introduce a Companion-Probe & Race (CPR) platform that enables interrogating nuclear proteins in living cells, while guiding and tracking cellular behaviors (e.g., migration) in real time. The Companion-Probe consists of two polypeptide complexes that were structured with nuclear localization signal (NLS) for entering nucleus, recognition polypeptide for targeting different sites of nuclear proteins, and fragments of green fluorescent protein (GFP) that can recover a whole fluorescent GFP once the two polypeptide complexes combine with a same target protein. The two polypeptide complexes were expressed by two plasmids (named "probe plasmids") that were uniformly and efficiently delivered into cells by nano-electroporation (NEP), a high-performance delivery method for cell focal-poration and accelerated intracellular delivery. To track cell migration, multiple radial microchannels were designed with micro-landmarks on the platform to serve as addressable runways for cells. The proof-of-concept of CPR platform was validated with clinical primary cells that indicated the positive-correlation between nuclear protein murine double minute 2 (MDM2) expression level and cell migration velocity. This platform shows great promises to interrogate nuclear proteins in live cells, and to decode their roles in determining cellular behaviors on a chip.


Asunto(s)
Técnicas Biosensibles , Proteínas Nucleares , Animales , Núcleo Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo
14.
Front Bioeng Biotechnol ; 10: 851692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242753

RESUMEN

Bipolar disorder is a chronic mental disease with a heavy social and economic burden that causes extreme mood swings in patients. Valproate is a first-line drug for bipolar disorder patients to stabilize their daily mood. However, an excessive amount of valproate in the blood could induce severe adverse effects, which necessitates the monitoring of blood valproate levels for patients. Here, we developed an innovative electrochemical sensor for selective and simple detection of valproate based on a molecularly imprinted polymer membrane via one-step electropolymerization. Gold nanoparticles were electrochemically modified to the screen-printed electrode under the selective membrane to enhance its conductivity and stability. The successfully fabricated biosensor was characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry methods. The binding of the target molecules to the valproate-customized biomimetic polypyrrole membrane blocks cavities in the membrane and alters its electric properties, which can be detected as a decrease in the peak current by differential pulse voltammetry method. The peak current change presents a great log-linear response to the valproate concentration around the therapeutic window. The limit of detection of this method was 17.48 µM (LOD, S/N = 3) and the sensitivity was 31.86 µM µA-1. Furthermore, the biosensors exhibited both satisfying specificity with the interference of other psychological pharmaceutical drugs and uniformity among sensors, indicating their potential and reliability in translational application. This simple and reliable method of sensing valproate molecules primarily provides an exceptional solution to valproate point-of-care testing in clinical practice.

15.
Nanomaterials (Basel) ; 8(2)2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29462941

RESUMEN

Layered double hydroxides (LDHs) have been widely used as an important subset of solid base catalysts. However, developing low-cost, small-sized LDH nanoparticles with enhanced surface catalytic sites remains a challenge. In this work, silica aerogel (SA)-supported, small-sized Mg-Al LDH nanosheets were successfully prepared by one-pot coprecipitation of Mg and Al ions in an alkaline suspension of crushed silica aerogel. The supported LDH nanosheets were uniformly dispersed in the SA substrate with the smallest average radial diameter of 19.2 nm and the thinnest average thickness of 3.2 nm, both dimensions being significantly less than those of the vast majority of LDH nanoparticles reported. The SA/LDH composites also showed large pore volume (up to 1.3 cm3·g) and pore diameter (>9 nm), and therefore allow efficient access of reactants to the edge catalytic sites of LDH nanosheets. In a base-catalyzed Henry reaction of benzaldehyde with nitromethane, the SA/LDH catalysts showed high reactant conversions and favorable stability in 6 successive cycles of reactions. The low cost of the SA carrier and LDH precursors, easy preparation method, and excellent catalytic properties make these SA/LDH composites a competitive example of solid-base catalysts.

16.
Materials (Basel) ; 10(10)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28953249

RESUMEN

Highly dispersed Fe3+-doped layered double hydroxide (LDH-Fe) nanorings were obtained by a simple coprecipitation-acid etching approach. The morphology, structure, magnetic resonance imaging (MRI) performance in vitro, drug loading and releasing, Fe3+ leakage, and cytotoxicity of the as-prepared LDH-Fe nanorings were characterized. The LDH-Fe nanorings showed good water dispersity and a well-crystallized structure. The DLS average size of nanoparticles was measured to be 94.5 nm. Moreover, the MRI tests showed a favourable T1-weighted MRI performance of the LDH-Fe nanoring with r1 values of 0.54 and 1.68, and low r2/r1 ratios of 10.1 and 6.3, pre- and after calcination, respectively. The nanoparticles also showed high model drug (ibuprofen) loading capacities, low Fe3+ leakage, and negligible cytotoxicity. All these results demonstrate the potential of LDH-Fe nanorings as an imageable drug delivery system.

17.
Nanoscale Res Lett ; 12(1): 549, 2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28948484

RESUMEN

In this work, hydrozincite and Zn/Al-CO32- hydrotalcite supported on silica aerogel were prepared via a simple and economical process and used as adsorbents for Pb(II) removal. The supported hydrozincite and Zn/Al-CO32- hydrotalcite possess ultra-thin thickness, high surface area, and weak crystallinity. In the batch Pb(II) adsorption experiments, the adsorbents with higher Zn(II) contents showed higher Pb(II) adsorption capacities, and the adsorption data fitted well with the Langmuir isotherm model and pseudo-second-order kinetic model, indicating a mechanism of surface chemisorption. The adsorption capacities calculated based Langmuir isotherm model are 684.9 mg/g and 555.6 mg/g for the supported hydrozincite and Zn/Al-CO32- hydrotalcite, respectively, higher than the adsorption capacities of other hydrotalcite-based adsorbents and most of other inorganic adsorbents reported previously. The XRD diffraction peaks of hydrozincite and Zn/Al-CO32- hydrotalcite disappeared after the adsorption, and the Pb(II) species were uniformly dispersed in the adsorbents in form of Pb3(CO3)2(OH)2 proven by TEM, EDS mapping and XRD analysis, demonstrating the nature of the adsorption is the precipitation conversion of hydrozincite or Zn/Al-CO32- hydrotalcite into Pb3(CO3)2(OH)2. These results demonstrate the synergic Pb(II) removal effect of the CO32- and OH- derived from hydrozincite and Zn/Al-CO32- hydrotalcite together with their ultra-thin thickness and high surface area contribute the excellent properties of the adsorbents.

18.
Adv Drug Deliv Rev ; 54(4): 547-70, 2002 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-12052714

RESUMEN

The type I interferon alpha family consists of small proteins that have clinically important anti-infective and anti-tumor activity. Interferon alpha-2b (Intron A) combination therapy with ribavirin is the current standard of care for the treatment of chronic hepatitis C virus infection. A drawback to the therapy however, is the short serum half-life and rapid clearance of the interferon alpha protein. Schering-Plough has developed a semi-synthetic form of Intron A by attaching a 12-kDa mono-methoxy polyethylene glycol to the protein (PEG Intron) which fulfills the requirements of a long-acting interferon alpha protein while providing significant clinical benefits. A detailed physicochemical and biological characterization of PEG Intron revealed its composition of pegylated positional isomers and the specific anti-viral activity associated with each of them. Though pegylation appeared to decrease the specific activity of the interferon alpha-2b protein, the potency of PEG Intron, independent of protein concentration, was comparable to the Intron A standard at both the molecular and cellular level. Importantly, PEG Intron has demonstrated an enhanced pharmacokinetic profile in both animal and human studies. Recently, PEG Intron in combination with ribavirin has been shown to be very effective in reducing hepatitis C viral load and maintaining effective sustained viral suppression in patients. Because of the improved clinical benefits, it is anticipated that the PEG Intron plus ribavirin combination therapy will become the new standard of care for the treatment of chronic hepatitis C.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Interferón-alfa , Interferón-alfa/química , Interferón-alfa/farmacología , Polietilenglicoles , Animales , Antivirales/uso terapéutico , Dicroismo Circular , Quimioterapia Combinada , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Interferón alfa-2 , Interferón-alfa/uso terapéutico , Isomerismo , Proteínas Recombinantes , Ribavirina/uso terapéutico
19.
Curr Pharm Des ; 8(24): 2139-57, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12369859

RESUMEN

Derivatization of protein-based therapeutics with polyethylene glycol (pegylation) can often improve pharmacokinetic and pharmacodynamic properties of the proteins and thereby, improve efficacy and minimize dosing frequency. This review will provide an overview of pegylation technology and pegylated protein-based drugs being used or investigated clinically. The novel therapeutic, PEG Intron(R), formed by attaching a 12-kDa mono-methoxy polyethylene glycol (PEG) to the interferon alpha-2b protein, will be discussed in detail in terms of its structure, biological activities, pharmacokinetic properties, and clinical efficacy for the treatment of chronic hepatitis C. Detailed physicochemical and biological characterization studies of PEG Intron revealed its composition of pegylated positional isomers and the specific anti-viral activity associated with each of them. Pegylation of Intron A at pH 6.5 results in a mixture of > or = 95% mono-pegylated isoforms with the predominant species (approximately 50%) derivatized to the His(34) residue with the remaining positional isomers pegylated at various lysines, the N-terminal cysteine, as well as serine, tyrosine, and another histidine residue. The anti-viral activity for each pegylated isomer showed that the highest specific activity (37%) was associated with the His(34)-pegylated isomer. Though pegylation decreases the specific activity of the interferon alpha-2b protein in vitro, the potency of PEG Intron was comparable to the Intron A standard at both the molecular and cellular level. The substituted IFN had an enhanced pharmacokinetic profile in both animal and human studies, and, when combined with ribavirin, was very effective in reducing hepatitis C viral load and maintaining sustained viral suppression in patients.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Interferón-alfa/química , Interferón-alfa/uso terapéutico , Polietilenglicoles/química , Polietilenglicoles/uso terapéutico , Secuencia de Aminoácidos , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Fenómenos Químicos , Química Física , Citocinas/química , Citocinas/uso terapéutico , Humanos , Concentración de Iones de Hidrógeno , Interferón alfa-2 , Interferón-alfa/farmacocinética , Interferón-alfa/farmacología , Datos de Secuencia Molecular , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacología , Relación Estructura-Actividad
20.
J Med Chem ; 47(10): 2486-98, 2004 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15115392

RESUMEN

NMR-based screening of a customized fragment library identified 16 small-molecule hits that bind weakly (K(D) approximately 100 microM to 10 mM) to substrate binding sites of the NS4A-bound NS3 protease of the hepatitis C virus (HCV). Analogues for five classes of NMR hits were evaluated by a combination of NMR and biochemical data yielding SAR and, in most cases, optimized hits with improved potencies (K(D) approximately K(I) approximately 40 microM to 1 mM). NMR chemical shift perturbation data were used to establish the binding location and orientation of the active site directed scaffolds in these five analogue series. Two of these scaffolds, which bind the enzyme at the proximal S1-S3 and S2' substrate binding sites, were linked together producing competitive inhibitors of the HCV NS3 protease with potencies in the micromolar range. This example illustrates that the low molecular weight scaffolds discovered from structure-based NMR screening can be optimized with focused structure-guided chemistry to produce potent nonpeptidic small-molecule inhibitors of the HCV NS3 protease.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Inhibidores Enzimáticos/química , Hepacivirus/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Anilidas/química , Derivados del Benceno/química , Sitios de Unión , Bases de Datos Factuales , Inhibidores Enzimáticos/síntesis química , Indoles/química , Péptidos y Proteínas de Señalización Intracelular , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA