Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Respir Res ; 25(1): 14, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178075

RESUMEN

BACKGROUND: Ambient fine particulate matter (PM2.5) is considered a plausible contributor to the onset of chronic obstructive pulmonary disease (COPD). Mechanistic studies are needed to augment the causality of epidemiologic findings. In this study, we aimed to test the hypothesis that repeated exposure to diesel exhaust particles (DEP), a model PM2.5, causes COPD-like pathophysiologic alterations, consequently leading to the development of specific disease phenotypes. Sprague Dawley rats, representing healthy lungs, were randomly assigned to inhale filtered clean air or DEP at a steady-state concentration of 1.03 mg/m3 (mass concentration), 4 h per day, consecutively for 2, 4, and 8 weeks, respectively. Pulmonary inflammation, morphologies and function were examined. RESULTS: Black carbon (a component of DEP) loading in bronchoalveolar lavage macrophages demonstrated a dose-dependent increase in rats following DEP exposures of different durations, indicating that DEP deposited and accumulated in the peripheral lung. Total wall areas (WAt) of small airways, but not of large airways, were significantly increased following DEP exposures, compared to those following filtered air exposures. Consistently, the expression of α-smooth muscle actin (α-SMA) in peripheral lung was elevated following DEP exposures. Fibrosis areas surrounding the small airways and content of hydroxyproline in lung tissue increased significantly following 4-week and 8-week DEP exposure as compared to the filtered air controls. In addition, goblet cell hyperplasia and mucus hypersecretions were evident in small airways following 4-week and 8-week DEP exposures. Lung resistance and total lung capacity were significantly increased following DEP exposures. Serum levels of two oxidative stress biomarkers (MDA and 8-OHdG) were significantly increased. A dramatical recruitment of eosinophils (14.0-fold increase over the control) and macrophages (3.2-fold increase) to the submucosa area of small airways was observed following DEP exposures. CONCLUSIONS: DEP exposures over the courses of 2 to 8 weeks induced COPD-like pathophysiology in rats, with characteristic small airway remodeling, mucus hypersecretion, and eosinophilic inflammation. The results provide insights on the pathophysiologic mechanisms by which PM2.5 exposures cause COPD especially the eosinophilic phenotype.


Asunto(s)
Contaminantes Atmosféricos , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Material Particulado/toxicidad , Material Particulado/análisis , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Ratas Sprague-Dawley , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente
2.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L712-L721, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35318858

RESUMEN

Accumulating evidence has confirmed that chronic obstructive pulmonary disease (COPD) is a risk factor for development of severe pathological changes in the peripheral lungs of patients with COVID-19. However, the underlying molecular mechanisms remain unclear. Because bronchiolar club cells are crucial for maintaining small airway homeostasis, we sought to explore whether the altered susceptibility to SARS-CoV-2 infection of the club cells might have contributed to the severe COVID-19 pneumonia in COPD patients. Our investigation on the quantity and distribution patterns of angiotensin-converting enzyme 2 (ACE2) in airway epithelium via immunofluorescence staining revealed that the mean fluorescence intensity of the ACE2-positive epithelial cells was significantly higher in club cells than those in other epithelial cells (including ciliated cells, basal cells, goblet cells, neuroendocrine cells, and alveolar type 2 cells). Compared with nonsmokers, the median percentage of club cells in bronchiolar epithelium and ACE2-positive club cells was significantly higher in COPD patients. In vitro, SARS-CoV-2 infection (at a multiplicity of infection of 1.0) of primary small airway epithelial cells, cultured on air-liquid interface, confirmed a higher percentage of infected ACE2-positive club cells in COPD patients than in nonsmokers. Our findings have indicated the role of club cells in modulating the pathogenesis of SARS-CoV-2-related severe pneumonia and the poor clinical outcomes, which may help physicians to formulate a novel therapeutic strategy for COVID-19 patients with coexisting COPD.


Asunto(s)
COVID-19 , Enfermedad Pulmonar Obstructiva Crónica , Enzima Convertidora de Angiotensina 2 , Células Epiteliales , Humanos , Pulmón , Peptidil-Dipeptidasa A , SARS-CoV-2
3.
Exp Cell Res ; 371(2): 322-329, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30142324

RESUMEN

Tight junctions (TJs) alteration is commonly seen in airway inflammatory diseases. Oncostatin M (OSM) is an inflammatory mediator associated with chronic rhinosinusitis with nasal polyps (CRSwNP). We have previously shown that human nasal epithelial cells (hNECs) are highly permissive cells for influenza A virus (IAV). However, its role in TJs alteration and the effects of IAV on inducing OSM expression in nasal epithelium remains to be further investigated. In this study, OSM and TJs expression was measured and compared between inferior turbinate from healthy controls and nasal polyps from CRSwNP. Additionally, hNECs cultured at air-liquid interface (ALI) were infected with H3N2 influenza virus to study the role of influenza virus in inducing epithelial OSM expression as a possible means of exacerbation. The expression of ZO-1, claudin-1, and occludin was markedly decreased and correlated negatively with that of OSM in CRSwNP. By using the in vitro hNEC model, H3N2 infection resulted in significantly increased OSM expression (2.2-, 4.7- and 3.9-fold higher at 8, 24, and 48 h post-infection vs. mock infection). Furthermore, OSM is found to co-localize with ciliated and goblet cells in hNECs infected with H3N2 influenza virus. Our findings demonstrated that increased OSM expression is implicated in CRSwNP as a possible mechanism of TJs' impairment, which can be further augmented following influenza infection via epithelial OSM expression, possibly contributing to exacerbations.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/genética , Mucosa Nasal/metabolismo , Pólipos Nasales/genética , Oncostatina M/genética , Rinitis/genética , Sinusitis/genética , Adulto , Estudios de Casos y Controles , Diferenciación Celular , Enfermedad Crónica , Claudina-1/genética , Claudina-1/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Gripe Humana/patología , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Mucosa Nasal/patología , Mucosa Nasal/virología , Pólipos Nasales/metabolismo , Pólipos Nasales/patología , Pólipos Nasales/virología , Ocludina/genética , Ocludina/metabolismo , Oncostatina M/metabolismo , Cultivo Primario de Células , Rinitis/metabolismo , Rinitis/patología , Rinitis/virología , Transducción de Señal , Sinusitis/metabolismo , Sinusitis/patología , Sinusitis/virología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Uniones Estrechas/virología , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
4.
Cell Death Discov ; 9(1): 447, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071234

RESUMEN

Pathological tissue remodeling is closely associated with the occurrence and aggravation of various diseases. A Disintegrin And Metalloproteinases (ADAM), as well as A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS), belong to zinc-dependent metalloproteinase superfamily, are involved in a range of pathological states, including cancer metastasis, inflammatory disorders, respiratory diseases and cardiovascular diseases. Mounting studies suggest that ADAM and ADAMTS proteases contribute to the development of tissue remodeling in various diseases, mainly through the regulation of cell proliferation, apoptosis, migration and extracellular matrix remodeling. This review focuses on the roles of ADAM and ADAMTS proteinases in diseases with pathological tissue remodeling, with particular emphasis on the molecular mechanisms through which ADAM and ADAMTS proteins mediate tissue remodeling. Some of these reported proteinases have defined protective or contributing roles in indicated diseases, while their underlying regulation is obscure. Future studies are warranted to better understand the catalytic and non-catalytic functions of ADAM and ADAMTS proteins, as well as to evaluate the efficacy of targeting these proteases in pathological tissue remodeling.

5.
Signal Transduct Target Ther ; 8(1): 242, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301869

RESUMEN

Repurposing existing drugs to inhibit SARS-CoV-2 infection in airway epithelial cells (AECs) is a quick way to find novel treatments for COVID-19. Computational screening has found dicoumarol (DCM), a natural anticoagulant, to be a potential SARS-CoV-2 inhibitor, but its inhibitory effects and possible working mechanisms remain unknown. Using air-liquid interface culture of primary human AECs, we demonstrated that DCM has potent antiviral activity against the infection of multiple Omicron variants (including BA.1, BQ.1 and XBB.1). Time-of-addition and drug withdrawal assays revealed that early treatment (continuously incubated after viral absorption) of DCM could markedly inhibit Omicron replication in AECs, but DCM did not affect the absorption, exocytosis and spread of viruses or directly eliminate viruses. Mechanistically, we performed single-cell sequencing analysis (a database of 77,969 cells from different airway locations from 10 healthy volunteers) and immunofluorescence staining, and showed that the expression of NAD(P)H quinone oxidoreductase 1 (NQO1), one of the known DCM targets, was predominantly localised in ciliated AECs. We further found that the NQO1 expression level was positively correlated with both the disease severity of COVID-19 patients and virus copy levels in cultured AECs. In addition, DCM treatment downregulated NQO1 expression and disrupted signalling pathways associated with SARS-CoV-2 disease outcomes (e.g., Endocytosis and COVID-19 signalling pathways) in cultured AECs. Collectively, we demonstrated that DCM is an effective post-exposure prophylactic for SARS-CoV-2 infection in the human AECs, and these findings could help physicians formulate novel treatment strategies for COVID-19.


Asunto(s)
COVID-19 , Dicumarol , Humanos , SARS-CoV-2 , COVID-19/genética , Epitelio
6.
Food Funct ; 14(21): 9841-9856, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37850547

RESUMEN

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and characterized by emphysema, small airway remodeling and mucus hypersecretion. Citrus peels have been widely used as food spices and in traditional Chinese medicine for chronic lung disease. Given that citrus peels are known for containing antioxidants and anti-inflammatory compounds, we hypothesize that citrus peel intake can suppress oxidative stress and inflammatory response to air pollution exposure, thereby alleviating COPD-like pathologies. This study aimed to investigate the efficacy of citrus peel extract, namely Guang Chenpi (GC), in preventing the development of COPD induced by diesel exhaust particles (DEPs) and its potential mechanism. DEP-induced COPD-like lung pathologies, inflammatory responses and oxidative stress with or without GC treatment were examined in vivo and in vitro. Our in vivo study showed that GC was effective in decreasing inflammatory cell counts and inflammatory mediator (IL-17A and TNF-α) concentrations in bronchoalveolar lavage fluid (BALF). Pretreatment with GC extract also significantly decreased oxidative stress in the serum and lung tissue of DEP-induced COPD rats. Furthermore, GC pretreatment effectively reduced goblet cell hyperplasia (PAS positive cells) and fibrosis of the small airways, decreased macrophage infiltration as well as carbon loading in the peripheral lungs, and facilitated the resolution of emphysema and small airway remodeling in DEP-induced COPD rats. An in vitro free radical scavenging assay revealed robust antioxidant potential of GC in scavenging DPPH free radicals. Moreover, GC demonstrated potent capacities in reducing ROS production and enhancing SOD activity in BEAS-2B cells stimulated by DEPs. GC treatment significantly attenuated the increased level of IL-8 and MUC5AC from DEP-treated BEAS-2B cells. Mechanistically, GC treatment upregulated the protein level of Nrf-2 and could function via MAPK/NF-κB signaling pathways by suppressing the phosphorylation of p38, JNK and p65. Citrus peel extract is effective in decreasing oxidative stress and inflammatory responses of the peripheral lungs to DEP exposure. These protective effects further contributed to the resolution of COPD-like pathologies.


Asunto(s)
Citrus , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Emisiones de Vehículos/toxicidad , Citrus/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Pulmón , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Líquido del Lavado Bronquioalveolar/química , Enfisema/metabolismo
7.
Mil Med Res ; 9(1): 7, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35093168

RESUMEN

BACKGROUND: Airway inflammation is the core pathological process of asthma, with the key inflammatory regulators incompletely defined. Recently, fibroblast growth factor 2 (FGF2) has been reported to be an inflammatory regulator; however, its role in asthma remains elusive. This study aimed to investigate the immunomodulatory role of FGF2 in asthma. METHODS: First, FGF2 expression was characterised in clinical asthma samples and the house dust mite (HDM)-induced mouse chronic asthma model. Second, recombinant mouse FGF2 (rm-FGF2) protein was intranasally delivered to determine the effect of FGF2 on airway inflammatory cell infiltration. Third, human airway epithelium-derived A549 cells were stimulated with either HDM or recombinant human interleukin-1ß (IL-1ß) protein combined with or without recombinant human FGF2. IL-1ß-induced IL-6 or IL-8 release levels were determined using enzyme-linked immunosorbent assay, and the involved signalling transduction was explored via Western blotting. RESULTS: Compared with the control groups, the FGF2 protein levels were significantly upregulated in the bronchial epithelium and alveolar areas of clinical asthma samples (6.70 ± 1.79 vs. 16.32 ± 2.40, P = 0.0184; 11.20 ± 2.11 vs. 21.00 ± 3.00, P = 0.033, respectively) and HDM-induced asthmatic mouse lung lysates (1.00 ± 0.15 vs. 5.14 ± 0.42, P < 0.001). Moreover, FGF2 protein abundance was positively correlated with serum total and anti-HDM IgE levels in the HDM-induced chronic asthma model (R2 = 0.857 and 0.783, P = 0.0008 and 0.0043, respectively). Elevated FGF2 protein was mainly expressed in asthmatic bronchial epithelium and alveolar areas and partly co-localised with infiltrated inflammatory cell populations in HDM-induced asthmatic mice. More importantly, intranasal instillation of rm-FGF2 aggravated airway inflammatory cell infiltration (2.45 ± 0.09 vs. 2.88 ± 0.14, P = 0.0288) and recruited more subepithelial neutrophils after HDM challenge [(110.20 ± 29.43) cells/mm2 vs. (238.10 ± 42.77) cells/mm2, P = 0.0392] without affecting serum IgE levels and Th2 cytokine transcription. In A549 cells, FGF2 was upregulated through HDM stimulation and promoted IL-1ß-induced IL-6 or IL-8 release levels (up to 1.41 ± 0.12- or 1.44 ± 0.14-fold change vs. IL-1ß alone groups, P = 0.001 or 0.0344, respectively). The pro-inflammatory effect of FGF2 is likely mediated through the fibroblast growth factor receptor (FGFR)/mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) pathway. CONCLUSION: Our findings suggest that FGF2 is a potential inflammatory modulator in asthma, which can be induced by HDM and acts through the FGFR/MAPK/NF-κB pathway in the airway epithelial cells.


Asunto(s)
Asma , FN-kappa B , Animales , Asma/metabolismo , Asma/patología , Células Epiteliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Inflamación/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
8.
Front Cell Dev Biol ; 9: 810842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35174169

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease attributed to the complex interplay of genetic and environmental risks. The muco-ciliary clearance (MCC) system plays a critical role in maintaining the conduit for air to and from the alveoli, but it remains poorly understood whether the MCC abnormalities in conducting airway are involved in IPF pathogenesis. In this study, we obtained the surgically resected bronchi and peripheral lung tissues from 31 IPF patients and 39 control subjects, and we sought to explore the morphologic characteristics of MCC in conducting airway by using immunostaining and scanning and transmission electron microscopy. In the submucosal regions of the bronchi, we found that the areas of mucus glands (MUC5B+) were significantly larger in IPF patients as compared with control subjects (p < 0.05). In the surface epithelium of three airway regions (bronchi, proximal bronchioles, and distal bronchioles), increased MUC5B and MUC5AC expression of secretory cells, decreased number of ciliated cells, and increased ciliary length were observed in IPF patients than control subjects (all p < 0.05). In addition, the mRNA expression levels of MUC5B were up-regulated in both the bronchi and peripheral lung of IPF patients than those of control subjects (p < 0.05), accompanied with 93.55% IPF subjects who had obvious MUC5B+ mucus plugs in alveolar regions. No MUC5B rs35705950 single-nucleotide polymorphism allele was detected in both IPF patients and control subjects. Our study shows that mucus hypersecretion and ciliary impairment in conducting airway are major causes of mucus plugs in alveolar regions and may be closely related to the alveolar injuries in IPF patients.

9.
Front Cell Dev Biol ; 8: 59, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117985

RESUMEN

Cellular senescence is a complicated process featured by irreversible cell cycle arrest and senescence-associated secreted phenotype (SASP), resulting in accumulation of senescent cells, and low-grade inflammation. Cellular senescence not only occurs during the natural aging of normal cells, but also can be accelerated by various pathological factors. Cumulative studies have shown the role of cellular senescence in the pathogenesis of chronic lung diseases including chronic obstructive pulmonary diseases (COPD) and idiopathic pulmonary fibrosis (IPF) by promoting airway inflammation and airway remodeling. Recently, great interest has been raised in the involvement of cellular senescence in asthma. Limited but valuable data has indicated accelerating cellular senescence in asthma. This review will compile current findings regarding the underlying relationship between cellular senescence and asthma, mainly through discussing the potential mechanisms of cellular senescence in asthma, the impact of senescent cells on the pathobiology of asthma, and the efficiency and feasibility of using anti-aging therapies in asthmatic patients.

10.
Ther Clin Risk Manag ; 14: 1863-1869, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323608

RESUMEN

BACKGROUND AND PURPOSE: Hospital-acquired pneumonia (HAP) remains an important cause of morbidity and mortality despite advances in antimicrobial therapy. The emergence of multidrug resistant (MDR) Pseudomonas aeruginosa (PA) is of major concern. Our aim was to evaluate the risk factors and prognosis of HAP due to MDR-PA infection. PATIENTS AND METHODS: In a retrospective observational study, we collected data on all episodes of HAP caused by PA (PA-HAP) occurring from January 2013 to December 2016. Characteristics of patients with drug-sensitive PA were compared with those with MDR-PA. Data of demographic, underlying conditions, peripheral neutrophil-to-lymphocyte ratio (NLR), and clinical outcomes were collected and analyzed. RESULTS: One hundred fifty-seven patients with PA-HAP were included, of which 69 (43.9%) patients were diagnosed with MDR-PA infection. There were significant differences between MDR-PA group and non-MDR-PA group on the following variables: initial inappropriate antibiotic therapy (P<0.001, OR 0.103, 95% CI 0.044-0.244), admission in more than two departments in previous 30 days (P<0.001, OR 0.186, 95% CI 0.072-0.476), and NLR level (P=0.020, OR 0.911, 95% CI 0.843-0.985). The effect of antibiotic treatment was significantly different (P<0.001, OR 4.263, 95% CI 2.142-8.483). The 30-day mortality was higher in MDR-PA group than that in non-MDR-PA group (P<0.001). CONCLUSION: We have shown that lower NLR level was identified as a clinical predictor of MDR-PA infection in HAP patients. Even with goal-directed therapy, MDR-PA infection implicates poor outcomes in patients with HPA.

11.
Ther Clin Risk Manag ; 14: 409-416, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29520147

RESUMEN

OBJECTIVE: To investigate the alterative spectrum and trends of aeroallergens sensitization in children with allergic rhinitis (AR) in Guangzhou, China in the past 10 years. PARTICIPANTS AND METHODS: In this retrospective study, 4,111 children with complaints of nasal hyper-reactivity who visited the Pediatric Department and/or Otolaryngology Department from January 2007 to November 2016 were enrolled. Serum specific immunoglobulin E was measured and positive detection was made in 3,328 patients, who were, therefore, diagnosed with AR. Positive rates and trends of different aeroallergens sensitization were assessed. The tendency of positive rates changing over the years, and the difference and trends in positive rate of aeroallergen sensitization that occurred in subgroups of gender, age, and season were determined and analyzed with logistic regression. RESULTS: The percentage of detected common aeroallergens in AR children was (from high to low) 81.07%, 34.44%, 14.72%, 11.81%, 6.04%, and 3.70% for house dust mites (HDMs), cat-dog dander, cockroach, mold mixture, tree pollen mixture, and herb pollen mixture, respectively. An ascending trend of aeroallergens sensitization or AR (odds ratio [OR] =1.116, 95% CI: 1.086-1.146) was found. Interestingly, an increasing trend of cat-dog dander and mold sensitization was found in AR children (OR =1.164, 95% CI: 1.133-1.196; OR =1.169, 95% CI: 1.120-1.223) in this retrospective study, while HDMs sensitization held a steady trend (OR =0.983, 95% CI: 0.961-1.007). CONCLUSION: In the increasing trend of aeroallergens sensitization or AR, HDMs sensitization still held the majority. But emphasis should be made on pet allergy for young children with AR in the context of ascending trend of sensitization to cat-dog dander.

12.
J Thorac Dis ; 10(3): 1753-1764, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29707330

RESUMEN

BACKGROUND: Aberrant epithelial remodeling and/or abnormalities in mucociliary apparatus in airway epithelium contribute to infection and inflammation. It is uncertain if these changes occur in both large and small airways in non-cystic fibrosis bronchiectasis (non-CF bronchiectasis). In this study, we aim to investigate the histopathology and inflammatory profile in the epithelium of bronchi and bronchioles in bronchiectasis. METHODS: Excised lung tissue sections from 52 patients with non-CF bronchiectasis were stained with specific cellular markers and analyzed by immunohistochemistry and immunofluorescence to assess the epithelial structures, including ciliated cells and goblet cells morphology. Inflammatory cell counts and ciliary proteins expression levels of centrosomal protein 110 (CP110) and dynein heavy chain 5, axonemal (DNAH5) were assessed. RESULTS: Epithelial hyperplasia is found in both bronchi and bronchioles in all specimens, including hyperplasia and/or hypertrophy of goblet cells. The median cilia length is longer in hyperplastic epithelium [bronchi: 8.16 (7.03-9.14) µm, P<0.0001; bronchioles: 7.46 (6.41-8.48) µm, P<0.0001] as compared to non-hyperplastic epithelium (bronchi: 5.60 µm; bronchioles: 4.89 µm). Hyperplastic epithelium is associated with overexpression of CP110 and decreased intensity of DNAH5 expression in both bronchial and bronchiolar epithelium. Though infiltration of neutrophils is predominant (63.0% in bronchi and 76.7% in bronchioles), eosinophilic infiltration is also present in the mucosa of bronchi (30.8%) and bronchioles (54.8%). CONCLUSIONS: Aberrant epithelial remodeling with impaired mucociliary architecture is present in both large and small airways in patients with refractory non-CF bronchiectasis. Future studies should evaluate the interplay between these individual components in driving chronic inflammation and lung damage in patients.

13.
Artículo en Inglés | MEDLINE | ID: mdl-30459817

RESUMEN

BACKGROUND: Upper airway inflammatory diseases are associated with abnormal expression of nasal epithelial forkhead-box J1 (FOXJ1) which regulates motile cilia formation. We sought to investigate whether aberrant FOXJ1 localizations correlate with the disease severity and the co-existence of allergic rhinitis (AR) or asthma in patients with nasal polyps (NPs). METHODS: We elucidated localization patterns of FOXJ1 by performing immunofluorescence assays in nasal specimens and cytospin samples from controls and patients with NPs. We also assayed mRNA expression levels of FOXJ1 by using quantitative real-time polymerase chain reaction. Four localization patterns [normal (N), intermediate (I), mislocalization (M), and absence (A)] were defined. A semi-quantitative scoring system was applied for demonstrating FOXJ1 localization in five areas per paraffin section, with individual sections being scored between 0 and 2. RESULTS: FOXJ1 localization score was significantly higher in samples from NPs than in controls (P < 0.001). Elevated FOXJ1 localization scores and down-regulation of FOXJ1 mRNA levels were observed in NPs with co-existing AR or asthma (all P < 0.05). Moreover, FOXJ1 localization scores positively correlated with Lund-Mackay score (r = 0.362, P = 0.007). Of primary cytospin samples, the mean percentage of patients with FOXJ1 localization patterns N, I, M and A was 15.0%, 3.3%, 53.3% and 28.3% in NPs, and 82.5%, 5.0%, 5.0% and 7.5% in controls, respectively (P < 0.001). CONCLUSIONS: Aberrant localization of FOXJ1 correlates with the severity and co-existence of AR or asthma in patients with NPs, and might be a novel target for assessment and intervention in NPs.

15.
Exp Ther Med ; 14(4): 2911-2916, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28966674

RESUMEN

Airway remodeling is a hallmark of bronchial asthma. Our group has previously reported that the thymic stromal lymphopoietin (TSLP), an airway epithelial-derived cytokine, has a central role in the pathogenesis of airway remodeling, and that toll-like receptor (TLR) 4 signaling in epithelial cells may trigger T-helper 2 (Th2) immune responses by overexpression of TSLP. However, it is currently unclear whether TLR4 is a target in the treatment of airway remodeling in asthma. The present study established a house dust mite (HDM)-induced chronic asthmatic model in female BALB/c mice and treated the HDM-exposed mice with 3 mg/kg TAK242, as a TLR4 antagonist, 30 min prior to HDM challenge for up to 2 weeks. General structural changes in the airways were subsequently evaluated and the levels of TSLP in the bronchoalveolar lavage fluid (BALF) and interleukin (IL)-4, IL-13 and interferon (IFN)-γ in the blood serum were determined. Results indicated that TAK242 treatment markedly reduced pathological changes in the airways of HDM-induced asthmatic mice, as demonstrated by reductions in airway wall thickening, peribronchial collagen deposition and subepithelial fibrosis. Furthermore, airway hyperresponsiveness to inhaled methacholine and the levels of TSLP in the BALF and IL-4, IL-13 and IFN-γ in the peripheral blood were significantly reduced by TAK242 treatment (P<0.05). Furthermore, the shift in the IFN-γ/IL-4 ratio induced by HDM treatment was significantly reversed following TAK242 pretreatment, which indicated that TAK242 modulated Th1/Th2 immune homeostasis in the chronic asthma mouse model. The present findings in a chronic asthma mouse model suggest that TAK242 may be an efficient treatment for airway remodeling, possibly through the inhibition of TSLP overexpression and Th2 airway inflammation.

16.
Ther Clin Risk Manag ; 12: 1563-1571, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27799777

RESUMEN

BACKGROUND AND PURPOSE: Early or primary application of high-frequency oscillatory ventilation (HFOV) has been recently suggested not to offer benefit to patients with acute respiratory distress syndrome (ARDS). However, the rescue effects of HFOV on severe pediatric acute respiratory distress syndrome (PARDS) with hypoxemia refractory to conventional mechanical ventilation (CMV) remain unclear. This study aimed to determine whether severe PARDS children would benefit from HFOV when oxygenation deteriorated on CMV and to identify any potential risk factors related to mortality. PATIENTS AND METHODS: In a retrospective and observational study, 48 children with severe PARDS between January 2009 and July 2015 were divided into two groups: 26 in HFOV group and 22 in CMV group. Data regarding demographic, underlying conditions, arterial blood gases and clinical outcomes were collected and analyzed. RESULTS: The arterial partial pressure of oxygen (PaO2)/fraction of inspiration oxygen (FiO2) ratio and PaO2 improved significantly during HFOV, whereas arterial partial pressure of carbon dioxide (PaCO2) and oxygenation index decreased. There was no statistical difference in the in-hospital mortality between the groups (P=0.367). The odds ratio of survival in HFOV group was 2.74 (95% confidence interval 0.52 to 14.58, P=0.237). The pediatric intensive care unit length of stay and total ventilation duration were longer in HFOV group (P=0.048 and P=0.000, respectively). Vasoactive agents were used more frequently in HFOV group (P=0.007). The incidence of new air leak was similar between the two groups (P=0.674). The presence of multiple organ dysfunction syndrome and heavier body weight were identified as predictors of mortality in the HFOV group (P=0.006 and P=0.020, respectively). CONCLUSION: HFOV as an efficient alternative therapy could significantly improve hypoxemia and promote CO2 removal in severe PARDS children when oxygenation progressively worsens on CMV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA