RESUMEN
The primate brain was thought to contain only the GnRH known as mammalian GnRH (mGnRH). This study investigates whether a second form of GnRH exists within the primate brain. We found that brain extracts from adult stumptail and rhesus monkeys contained two forms of GnRH that were similar to mGnRH and chicken GnRH-II (cGnRH-II) based on the elution position of the peptides from HPLC and on cross-reactivity with antisera that are specific to mammalian or chicken GnRH-II in RIAs. The fetal brain of rhesus monkeys also contained mGnRH and a cGnRH-II-like peptide by the same criteria. Immunocytochemistry with a cGnRH-II-specific antiserum in adult and fetal rhesus monkeys showed immunopositive neurons generally scattered in the periaqueductal region of the midbrain, with a few positive cells in the posterior basal hypothalamus. Neurons immunopositive for cGnRH-II were fewer in number and smaller in size, with less defined nuclei and thinner neurites compared with those for mGnRH. Administration of synthetic cGnRH-II to adult rhesus monkeys resulted in a significant increase in the plasma LH concentration during the luteal phase of the menstrual cycle, but not during the midfollicular phase. We conclude that the primate brain contains mGnRH and a cGnRH-II-like molecule, although the function of the latter is unknown.
Asunto(s)
Pollos/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Macaca/metabolismo , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Reacciones Cruzadas/inmunología , Femenino , Feto/metabolismo , Fase Folicular/fisiología , Hormona Liberadora de Gonadotropina/farmacología , Sueros Inmunes/inmunología , Inmunohistoquímica/métodos , Isomerismo , Hormona Luteinizante/sangre , Macaca/embriología , Macaca mulatta , Distribución TisularRESUMEN
Perchlike fish are a vast group of advanced teleosts. The species examined to date have three forms of gonadotropin-releasing hormone (GnRH) within a single species, but the origin of the third GnRH peptide is unknown. In this study, the primary structure of three GnRH peptides is determined from the brain of the pacu, Piaractus mesopotamicus, an example of a teleost that is less advanced than the perchlike fish. The GnRH was purified from pacu brain extracts using high performance liquid chromatography (HPLC) and radioimmunoassay (RIA). The three forms identified by chemical sequencing and mass spectrometry are sea bream GnRH (pGlu-His-Trip-Ser-Tyr-Gly-Leu-Ser -Pro-Gly-NH2, 1113.4 Da); chicken GnRH-II (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2, 1236.6 Da); and salmon GnRH (pGlu-His-Trp-Ser-Tyr-Gly-Trp-Leu-Pro-Gly-NH2, 1212.3 Da). In addition the number of forms of GnRH in the brains of male and female fish was determined separately. The same three forms of GnRH were present in the brains of both sexes as determined by antisera cross-reactivity and elution position from the HPLC column. The results indicate that the pacu brain has the identical forms of GnRH identified in perchlike fish and hence, the origin of three forms occurred earlier in evolution than previously thought.
Asunto(s)
Química Encefálica , Hormona Liberadora de Gonadotropina/química , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Evolución Molecular , Femenino , Peces , Hormona Liberadora de Gonadotropina/aislamiento & purificación , Masculino , Espectrometría de Masas , Datos de Secuencia Molecular , Peso Molecular , RadioinmunoensayoRESUMEN
Two forms of immunoreactive gonadotropin-releasing hormone (GnRH) were extracted from brain-pituitary tissues of Thai catfish, Clarias macrocephalus and C. batrachus. The peptides were detected using high performance liquid chromatography (HPLC) and radioimmunoassay (RIA). In both the HPLC systems, catfish GnRH-I eluted earlier than catfish GnRH-II and also eluted before the synthetic standards of mammalian, lamprey, chicken I, chicken II, and salmon GnRH. Hence, catfish GnRH-I appears to be the most hydrophilic GnRH family member because of this early elution from the HPLC. Catfish GnRH-II eluted in a position similar to that of chicken GnRH-II. This study suggests that catfish GnRH-I is a novel form of GnRH, whereas catfish GnRH-II is the same as chicken GnRH-II. Indirect evidence suggests that the catfish molecule is 10 amino acids in length and has an amide at the C-terminus. Moreover, the novel catfish GnRH appears to be different within the domain of amino acids 5 to 10 compared with mammalian GnRH because it is not recognized by antiserum B-6. An injection of native chicken GnRH-II was more effective than salmon or mammalian GnRH for induced ovulation in C. macrocephalus.
Asunto(s)
Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/fisiología , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Bagres , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Femenino , Fertilización/efectos de los fármacos , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/aislamiento & purificación , Masculino , Datos de Secuencia Molecular , Ovulación/efectos de los fármacos , Hipófisis/metabolismo , RadioinmunoensayoRESUMEN
GnRH is usually classified as a neuropeptide that is synthesized in the brain. Recent evidence indicates that GnRH mRNA is present also in the ovary and testis. However, isolation of the peptide from testis has not been reported. We used HPLC and specific RIAs to determine whether the GnRH peptide can be detected in gonads, the developmental stage at which the peptide is expressed, and the number of molecular forms of GnRH that are present in the ovary and testis. Extracts of immature and mature ovarian and testicular tissue were examined from 17- to 21-mo-old rainbow trout (Oncorhynchus mykiss). For the first time, GnRH peptides were isolated from testis and identified by HPLC-RIA with specific antisera and by elution position compared with synthetic standards. GnRH peptides were also present in the ovary. In addition, multiple forms of GnRH, including a form not normally detected in the brain of trout, were shown to be present in the gonads. During development, GnRH peptides were expressed only at specific stages in the gonads, which may explain the inability to detect and isolate the GnRH peptides from gonads in earlier studies.
Asunto(s)
Hormona Liberadora de Gonadotropina/análisis , Oncorhynchus mykiss/metabolismo , Ovario/química , Envejecimiento , Animales , Encéfalo/crecimiento & desarrollo , Química Encefálica , Cromatografía Líquida de Alta Presión , Femenino , Hormona Liberadora de Gonadotropina/análogos & derivados , Masculino , Ovario/crecimiento & desarrollo , Radioinmunoensayo , Testículo/química , Testículo/crecimiento & desarrolloRESUMEN
The presence of multiple forms of gonadotropin-releasing hormone (GnRH) within a single brain is common among vertebrate species. In previous studies of reptiles, two forms of GnRH were isolated from the brain of alligators and the primary structure was determined to be that of chicken (c)GnRH-I and cGnRH-II. GnRH has also been detected by indirect methods in other reptiles including turtles, lizards, and snakes. We used a combination of high-performance liquid chromatography (HPLC) and radioimmunoassay to determine the number and molecular form(s) of GnRH in the brain of a lizard, Anolis carolinensis, that was reported to lack GnRH cells in the forebrain. Immunoreactivity was detected in the same HPLC elution position in which synthetic cGnRH-II elutes, but not in any other position. Detection was based on five antisera that among them detect the 12 known forms of GnRH; these antisera include ones that are specific to cGnRH-I and cGnRH-II. We conclude that the lizard A. carolinensis contains cGnRH-II, but not cGnRH-I or another known form of GnRH. These data, coupled with our earlier immunocytochemical study, suggest that the lizard studied here lacks cGnRH-I, the form that is found in the terminal nerve, olfactory bulb, and forebrain in nonsquamate reptiles and in birds. Our hypothesis is that the presence of both cGnRH-I and cGnRH-II in the brain is ancestral in the reptilian lineage and retained in the orders that include turtles (Chelonia) or alligators (Crocodilia). However, the pattern in the order Squamata varies: in A. carolinensis, only cGnRH-II is present in the brain and cGnRH-I is absent, whereas in the snake Thamnophilis sirtalis, cGnRH-I is retained and cGnRH-II is absent in the brain, as recently reported. This raises the question of how reproduction is controlled in reptiles that lack one form of GnRH.
Asunto(s)
Química Encefálica , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/análisis , Lagartos , Animales , Especificidad de Anticuerpos , Cromatografía Líquida de Alta Presión , Sueros Inmunes , RadioinmunoensayoRESUMEN
The molecular forms of gonadotropin-releasing hormone (GnRH) were examined in the bonytongue fishes (Osteoglossomorpha), one of the most ancient living teleost groups. These fish represent a phylogenetic link between the early ray-finned fishes and the modern teleosts. Five representative species from four of six bonytongue families were examined for GnRH using high-performance liquid chromatography and radioimmunoassay techniques with antisera raised against salmon (s), chicken-II (c-II), and mammalian (m) forms of GnRH. Salmon GnRH and cGnRH-II were identified in four of the species (arawana, elephantnose, false featherfin, Asiatic featherfin) whereas in the butterfly fish, mGnRH and cGnRH-II were identified. Our data suggest that teleosts such as eels and butterfly fish, which have mGnRH like that of even earlier ray-finned fishes, may have evolved before fish with sGnRH. We also suggest that sGnRH first appeared in the Osteoglossomorpha. The phylogenetic relationship of the eels (Anguillidae), butterfly fish (Pantodontidae), and bonytongue fish among other teleosts needs to be reexamined using additional characteristics.