Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 601(21): 4767-4806, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37786382

RESUMEN

Comprehensive and accurate analysis of respiratory and metabolic data is crucial to modelling congenital, pathogenic and degenerative diseases converging on autonomic control failure. A lack of tools for high-throughput analysis of respiratory datasets remains a major challenge. We present Breathe Easy, a novel open-source pipeline for processing raw recordings and associated metadata into operative outcomes, publication-worthy graphs and robust statistical analyses including QQ and residual plots for assumption queries and data transformations. This pipeline uses a facile graphical user interface for uploading data files, setting waveform feature thresholds and defining experimental variables. Breathe Easy was validated against manual selection by experts, which represents the current standard in the field. We demonstrate Breathe Easy's utility by examining a 2-year longitudinal study of an Alzheimer's disease mouse model to assess contributions of forebrain pathology in disordered breathing. Whole body plethysmography has become an important experimental outcome measure for a variety of diseases with primary and secondary respiratory indications. Respiratory dysfunction, while not an initial symptom in many of these disorders, often drives disability or death in patient outcomes. Breathe Easy provides an open-source respiratory analysis tool for all respiratory datasets and represents a necessary improvement upon current analytical methods in the field. KEY POINTS: Respiratory dysfunction is a common endpoint for disability and mortality in many disorders throughout life. Whole body plethysmography in rodents represents a high face-value method for measuring respiratory outcomes in rodent models of these diseases and disorders. Analysis of key respiratory variables remains hindered by manual annotation and analysis that leads to low throughput results that often exclude a majority of the recorded data. Here we present a software suite, Breathe Easy, that automates the process of data selection from raw recordings derived from plethysmography experiments and the analysis of these data into operative outcomes and publication-worthy graphs with statistics. We validate Breathe Easy with a terabyte-scale Alzheimer's dataset that examines the effects of forebrain pathology on respiratory function over 2 years of degeneration.


Asunto(s)
Respiración , Programas Informáticos , Animales , Ratones , Humanos , Estudios Longitudinales , Pletismografía
2.
Mamm Genome ; 34(2): 180-199, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37294348

RESUMEN

Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.


Asunto(s)
Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Ratones , Animales , Ratones Endogámicos C57BL , Ratones Endogámicos
3.
Int J Hyperthermia ; 40(1): 2159072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36581324

RESUMEN

OBJECTIVE: To investigate the effect of bidirectional fecal microbial transplant (FMT) between male and female rats on methamphetamine (MA)-induced hyperthermia. METHODS: FMT was performed between male and female rats prior to MA (10 mg/kg, sc) treatment. Core body temperature, plasma drug and norepinephrine (NE) levels were measured and compared between treatment groups. 16S rRNA gene sequencing of bacterial communities between male and female rats was performed. RESULTS: MA treatment resulted in significantly higher core body temperatures in male groups (control and FMT-treated) compared to MA-treated female groups (control and FMT-treated). Plasma concentrations of MA and amphetamine were higher in females than males. Whereas, plasma norepinephrine (NE) levels were not different between male and female rats 90 minutes after MA treatment. At the phyla level, the microbiome of male and female control rats were dominated by Firmicutes and Bacteroidetes. Males had a higher relative abundance of Firmicutes and lower relative abundances of Bacteroidetes than females. The FMT procedure changed the recipient group towards their donor with males getting closer to their donors than females. In the control groups following MA treatment, Firmicutes increased and Bacteroides decreased in females and males. Conversely, in the FMT treatment groups following MA treatment, Firmicutes decreased while Bacteroidetes increased in females and males. CONCLUSIONS: Although definite differences in the structure and diversity of the gut microbiome were observed using 16S rRNA gene sequencing of bacterial communities between male and female rats, these differences do not seem to contribute to the sex-based differences in MA-induced hyperthermia.


Asunto(s)
Infecciones por Clostridium , Hipertermia Inducida , Metanfetamina , Masculino , Femenino , Ratas , Animales , Heces/microbiología , ARN Ribosómico 16S/genética , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Bacterias
4.
Environ Microbiol ; 24(9): 4167-4177, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35715385

RESUMEN

Disturbances, here defined as events that directly alter microbial community composition, are commonly studied in host-associated and engineered systems. In spite of global change both altering environmental averages and increasing extreme events, there has been relatively little research into the causes, persistence and population-level impacts of disturbance in the dynamic coastal ocean. Here, we utilize 3 years of observations from a coastal time series to identify disturbances based on the largest week-over-week changes in the microbiome (i.e. identifying disturbance as events that alter the community composition). In general, these microbiome disturbances were not clearly linked to specific environmental factors and responsive taxa largely differed, aside from SAR11, which generally declined. However, several disturbance metagenomes identified increased phage-associated genes, suggesting that unexplained community shifts might be caused by increased mortality. Furthermore, a category 1 hurricane, the only event that would likely be classified a priori as an environmental disturbance, was not an outlier in microbiome composition, but did enhance a bloom in seasonally abundant phytoplankton. Thus, as extreme environmental changes intensify, assumptions of what constitutes a disturbance should be re-examined in the context of ecological history and microbiome responses.


Asunto(s)
Microbiota , Metagenoma , Microbiota/genética , Océanos y Mares , Fitoplancton
5.
Circ Res ; 127(6): 727-743, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32552404

RESUMEN

RATIONALE: We previously identified somatic activating mutations in the KRAS (Kirsten rat sarcoma viral oncogene homologue) gene in the endothelium of the majority of human sporadic brain arteriovenous malformations; a disorder characterized by direct connections between arteries and veins. However, whether this genetic abnormality alone is sufficient for lesion formation, as well as how active KRAS signaling contributes to arteriovenous malformations, remains unknown. OBJECTIVE: To establish the first in vivo models of somatic KRAS gain of function in the endothelium in both mice and zebrafish to directly observe the phenotypic consequences of constitutive KRAS activity at a cellular level in vivo, and to test potential therapeutic interventions for arteriovenous malformations. METHODS AND RESULTS: Using both postnatal and adult mice, as well as embryonic zebrafish, we demonstrate that endothelial-specific gain of function mutations in Kras (G12D or G12V) are sufficient to induce brain arteriovenous malformations. Active KRAS signaling leads to altered endothelial cell morphogenesis and increased cell size, ectopic sprouting, expanded vessel lumen diameter, and direct connections between arteries and veins. Furthermore, we show that these lesions are not associated with altered endothelial growth dynamics or a lack of proper arteriovenous identity but instead seem to feature exuberant angiogenic signaling. Finally, we demonstrate that KRAS-dependent arteriovenous malformations in zebrafish are refractory to inhibition of the downstream effector PI3K but instead require active MEK (mitogen-activated protein kinase kinase 1) signaling. CONCLUSIONS: We demonstrate that active KRAS expression in the endothelium is sufficient for brain arteriovenous malformations, even in the setting of uninjured adult vasculature. Furthermore, the finding that KRAS-dependent lesions are reversible in zebrafish suggests that MEK inhibition may represent a promising therapeutic treatment for arteriovenous malformation patients. Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Células Endoteliales/enzimología , Mutación con Ganancia de Función , Malformaciones Arteriovenosas Intracraneales/genética , MAP Quinasa Quinasa 1/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Predisposición Genética a la Enfermedad , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Malformaciones Arteriovenosas Intracraneales/enzimología , Malformaciones Arteriovenosas Intracraneales/patología , Hemorragias Intracraneales/enzimología , Hemorragias Intracraneales/genética , Hemorragias Intracraneales/patología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Masculino , Ratones Transgénicos , Permeabilidad , Fenotipo , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra
6.
Environ Sci Technol ; 53(6): 3268-3276, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30776221

RESUMEN

Most studies of bacterial exposure to environmental contaminants focus on acute treatments; however, the impacts of single, high-dose exposures on microbial communities may not readily be extended to the more likely scenario of chronic, low-dose contaminant exposures. Here, in a year-long, wetland mesocosm experiment, we compared microbial community responses to pulse (single 450 mg dose of silver) and chronic (weekly 8.7 mg doses of silver for 1 year) silver nanoparticle (Ag0 NP) treatments, as well as a chronic treatment of "aged" sulfidized silver nanoparticles (Ag2S NPs). While mesocosms exposed to Ag2S NPs never differed significantly from the controls, both Ag0 NP treatments exhibited reduced microbial diversity and altered community composition; however, the effects differed in timing, duration, and magnitude. Microbial community-level impacts in the acute Ag0 NP treatment were apparent only within the first weeks and then converged on the control mesocosm composition, while chronic exposure effects were observed several months after exposures began, likely due to interactive effects of nanoparticle toxicity and winter environmental conditions. Notably, there was a high level of overlap in the taxa which exhibited significant declines (>10×) in both treatments, suggesting a conserved toxicity response for both pulse and chronic exposures. Thus, this research suggests that complex, but short-term, acute toxicological studies may provide critical, cost-effective insights into identifying microbial taxa sensitive to long-term chronic exposures to Ag NPs.


Asunto(s)
Nanopartículas del Metal , Plata , Humedales
7.
Hum Mol Genet ; 25(22): 4983-4995, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28159985

RESUMEN

Sudden unexpected death occurs in one quarter of deaths in Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). People with RTT show a variety of autonomic nervous system (ANS) abnormalities and mouse models show similar problems including QTc interval prolongation and hypothermia. To explore the role of cardiac problems in sudden death in RTT, we characterized cardiac rhythm in mice lacking Mecp2 function. Male and female mutant mice exhibited spontaneous cardiac rhythm abnormalities including bradycardic events, sinus pauses, atrioventricular block, premature ventricular contractions, non-sustained ventricular arrhythmias, and increased heart rate variability. Death was associated with spontaneous cardiac arrhythmias and complete conduction block. Atropine treatment reduced cardiac arrhythmias in mutant mice, implicating overactive parasympathetic tone. To explore the role of MeCP2 within the parasympathetic neurons, we selectively removed MeCP2 function from cholinergic neurons (MeCP2 ChAT KO), which recapitulated the cardiac rhythm abnormalities, hypothermia, and early death seen in RTT male mice. Conversely, restoring MeCP2 only in cholinergic neurons rescued these phenotypes. Thus, MeCP2 in cholinergic neurons is necessary and sufficient for autonomic cardiac control, thermoregulation, and survival, and targeting the overactive parasympathetic system may be a useful therapeutic strategy to prevent sudden unexpected death in RTT.


Asunto(s)
Arritmias Cardíacas/metabolismo , Neuronas Colinérgicas/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Atropina/metabolismo , Neuronas Colinérgicas/patología , Muerte Súbita Cardíaca/patología , Modelos Animales de Enfermedad , Femenino , Corazón/fisiopatología , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Nervioso Parasimpático/patología , Fenotipo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología
8.
Hum Mol Genet ; 25(15): 3284-3302, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27365498

RESUMEN

Mouse models of the transcriptional modulator Methyl-CpG-Binding Protein 2 (MeCP2) have advanced our understanding of Rett syndrome (RTT). RTT is a 'prototypical' neurodevelopmental disorder with many clinical features overlapping with other intellectual and developmental disabilities (IDD). Therapeutic interventions for RTT may therefore have broader applications. However, the reliance on the laboratory mouse to identify viable therapies for the human condition may present challenges in translating findings from the bench to the clinic. In addition, the need to identify outcome measures in well-chosen animal models is critical for preclinical trials. Here, we report that a novel Mecp2 rat model displays high face validity for modelling psychomotor regression of a learned skill, a deficit that has not been shown in Mecp2 mice. Juvenile play, a behavioural feature that is uniquely present in rats and not mice, is also impaired in female Mecp2 rats. Finally, we demonstrate that evaluating the molecular consequences of the loss of MeCP2 in both mouse and rat may result in higher predictive validity with respect to transcriptional changes in the human RTT brain. These data underscore the similarities and differences caused by the loss of MeCP2 among divergent rodent species which may have important implications for the treatment of individuals with disease-causing MECP2 mutations. Taken together, these findings demonstrate that the Mecp2 rat model is a complementary tool with unique features for the study of RTT and highlight the potential benefit of cross-species analyses in identifying potential disease-relevant preclinical outcome measures.


Asunto(s)
Conducta Animal , Proteína 2 de Unión a Metil-CpG , Mutación , Síndrome de Rett , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatología
9.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143506

RESUMEN

There is a growing awareness of the ecological and biogeochemical importance of fungi in coastal marine systems. While highly diverse fungi have been discovered in these marine systems, still, little is known about their seasonality and associated drivers in coastal waters. Here, we examined fungal communities over 3 years of weekly sampling at a dynamic, temperate coastal site (Pivers Island Coastal Observatory [PICO], Beaufort, NC, USA). Fungal 18S rRNA gene abundance, operational taxonomic unit (OTU) richness, and Shannon's diversity index values exhibited prominent seasonality. Fungal 18S rRNA gene copies peaked in abundance during the summer and fall, with positive correlations with chlorophyll a, SiO4, and oxygen saturation. Diversity (measured using internal transcribed spacer [ITS] libraries) was highest during winter and lowest during summer; it was linked to temperature, pH, chlorophyll a, insolation, salinity, and dissolved inorganic carbon (DIC). Fungal communities derived from ITS libraries were dominated throughout the year by Ascomycota, with contributions from Basidiomycota, Chytridiomycota, and Mucoromycotina, and their seasonal patterns linked to water temperature, light, and the carbonate system. Network analysis revealed that while cooccurrence and exclusion existed within fungus networks, exclusion dominated the fungus-and-phytoplankton network, in contrast with reported pathogenic and nutritional interactions between marine phytoplankton and fungi. Compared with the seasonality of bacterial communities in the same samples, the timing, extent, and associated environmental variables for fungi community are unique. These results highlight the fungal seasonal dynamics in coastal water and improve our understanding of the ecology of planktonic fungi.IMPORTANCE Coastal fungal dynamics were long assumed to be due to terrestrial inputs; here, a high-resolution time series reveals strong, repeating annual patterns linked to in situ environmental conditions, arguing for a resident coastal fungal community shaped by environmental factors. These seasonal patterns do, however, differ from those observed in the bacterioplankton at the same site; e.g., fungal diversity peaks in winter, whereas bacterial diversity maxima occur in the spring and fall. While the dynamics of these communities are linked to water temperature and insolation, fungi are also influenced by the carbonate system (pH and DIC). As both fungi and heterotrophic bacteria are thought to be key organic-material metabolizers, differences in their environmental drivers may offer clues as to which group dominates secondary production at this dynamic site. Overall, this study suggests the unique ecological roles of mycoplankton and their potentially broad niche complementarities to other microbial groups in the coastal ocean.


Asunto(s)
Hongos/aislamiento & purificación , Plancton/aislamiento & purificación , Agua de Mar/microbiología , Biodiversidad , ADN de Hongos/genética , Ecosistema , Hongos/clasificación , Hongos/genética , North Carolina , Océanos y Mares , Filogenia , Plancton/clasificación , Plancton/genética , ARN Ribosómico 18S/genética , Estaciones del Año , Agua de Mar/química
10.
J Neurosci ; 36(20): 5572-86, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27194336

RESUMEN

UNLABELLED: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). Severe breathing abnormalities are common in RTT and are reproduced in mouse models of RTT. Previously, we found that removing MeCP2 from the brainstem and spinal cord in mice caused early lethality and abnormal breathing. To determine whether loss of MeCP2 in functional components of the respiratory network causes specific breathing disorders, we used the Cre/LoxP system to differentially manipulate MeCP2 expression throughout the brainstem respiratory network, specifically within HoxA4-derived tissues, which include breathing control circuitry within the nucleus tractus solitarius and the caudal part of ventral respiratory column but do not include more rostral parts of the breathing control circuitry. To determine whether respiratory phenotypes manifested in animals with MeCP2 removed from specific pons medullary respiratory circuits, we performed whole-body plethysmography and electrophysiological recordings from in vitro brainstem slices from mice lacking MeCP2 in different circuits. Our results indicate that MeCP2 expression in the medullary respiratory network is sufficient for normal respiratory rhythm and preventing apnea. However, MeCP2 expression within components of the breathing circuitry rostral to the HoxA4 domain are neither sufficient to prevent the hyperventilation nor abnormal hypoxic ventilatory response. Surprisingly, we found that MeCP2 expression in the HoxA4 domain alone is critical for survival. Our study reveals that MeCP2 is differentially required in select respiratory components for different aspects of respiratory functions, and collectively for the integrity of this network functions to maintain proper respiration. SIGNIFICANCE STATEMENT: Breathing abnormalities are a significant clinical feature in Rett syndrome and are robustly reproduced in the mouse models of this disease. Previous work has established that alterations in the function of MeCP2, the protein encoded by the gene mutated in Rett syndrome, within the hindbrain are critical for control of normal breathing. Here we show that MeCP2 function plays distinct roles in specific brainstem regions in the genesis of various aspects of abnormal breathing. This provides insight into the pathogenesis of these breathing abnormalities in Rett syndrome, which could be used to target treatments to improve these symptoms. Furthermore, it provides further knowledge about the fundamental neural circuits that control breathing.


Asunto(s)
Bulbo Raquídeo/fisiología , Proteína 2 de Unión a Metil-CpG/genética , Respiración , Síndrome de Rett/fisiopatología , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio , Masculino , Bulbo Raquídeo/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Síndrome de Rett/genética , Factores de Transcripción
11.
Am J Med Genet C Semin Med Genet ; 175(3): 368-379, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28910526

RESUMEN

Neurobehavioral disorders comprised of neurodegenerative, neurodevelopmental, and psychiatric disorders together represent leading causes of morbidity and mortality. Despite significant academic research and industry efforts to elucidate the disease mechanisms operative in these disorders and to develop mechanism-based therapies, our understanding remains incomplete and our access to tractable therapeutic interventions severely limited. The magnitude of these short-comings can be measured by the growing list of disappointing clinical trials based on initially promising compounds identified in genetic animal models. This review and commentary will explore why this may be so, focusing on the central role that genetic models of neurobehavioral disorders have come to occupy in current efforts to identify disease mechanisms and therapies. In particular, we will highlight the unique pitfalls and challenges that have hampered success in these models as compared to genetic models of non-neurological diseases as well as to symptom-based models of the early 20th century that led to the discovery of all major classes of psychoactive pharmaceutical compounds still used today. Using examples from specific genetic rodent models of human neurobehavioral disorders, we will highlight issues of reproducibility, construct validity, and translational relevance in the hopes that these examples will be instructive toward greater success in future endeavors. Lastly, we will champion a two-pronged approach toward identifying novel therapies for neurobehavioral disorders that makes greater use of the historically more successful symptom-based approaches in addition to more mechanism-based approaches.


Asunto(s)
Encefalopatías/genética , Modelos Animales de Enfermedad , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Mentales/genética , Trastornos del Neurodesarrollo/genética , Animales , Predisposición Genética a la Enfermedad/genética , Humanos , Ratones
12.
Appl Environ Microbiol ; 82(11): 3431-3437, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27037125

RESUMEN

UNLABELLED: There is a growing recognition of the roles of marine microenvironments as reservoirs of biodiversity and as sites of enhanced biological activity and in facilitating biological interactions. Here, we examine the bacterial community inhabiting free-living and particle-associated seawater microenvironments at the Pivers Island Coastal Observatory (PICO). 16S rRNA gene libraries from monthly samples (July 2013 to August 2014) were used to identify microbes in seawater in four size fractions: >63 µm (zooplankton and large particles), 63 to 5 µm (particles), 5 to 1 µm (small particles/dividing cells), and <1 µm (free-living prokaryotes). Analyses of microbial community composition highlight the importance of the microhabitat (e.g., particle-associated versus free-living lifestyle) as communities cluster by size fraction, and the microhabitat explains more of the community variability than measured environmental parameters, including pH, particle concentration, projected daily insolation, nutrients, and temperature. While temperature is statistically associated with community changes in the <1-µm and 5- to 1-µm fractions, none of the measured bulk seawater environmental variables are statistically significant in the larger-particle-associated fractions. These results, combined with high particle-associated community variability, especially in the largest size fraction (i.e., >63 µm), suggest that particle composition, including eukaryotes and their associated microbiomes, may be an important factor in selecting for specific particle-associated bacteria. IMPORTANCE: By comparing levels of particle-associated and free-living bacterial diversity at a coastal location over the course of 14 months, we show that bacteria associated with particles are generally more diverse and appear to be less responsive to commonly measured environmental variables than free-living bacteria. These diverse and highly variable particle-associated communities are likely driven by differences in particle substrates both within the water column at a single time point and due to seasonal changes over the course of the year.


Asunto(s)
Bacterias/clasificación , Bacterias/efectos de los fármacos , Biota/efectos de los fármacos , Agua de Mar/química , Agua de Mar/microbiología , Bacterias/genética , Bacterias/efectos de la radiación , Biota/efectos de la radiación , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , Concentración de Iones de Hidrógeno , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura
13.
Hum Mol Genet ; 22(1): 96-109, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23026749

RESUMEN

Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the gene encoding the transcriptional modulator methyl-CpG-binding protein 2 (MeCP2). Typical RTT primarily affects girls and is characterized by a brief period of apparently normal development followed by the loss of purposeful hand skills and language, the onset of anxiety, hand stereotypies, autistic features, seizures and autonomic dysfunction. Mecp2 mouse models have extensively been studied to demonstrate the functional link between MeCP2 dysfunction and RTT pathogenesis. However, the majority of studies have focused primarily on the molecular and behavioral consequences of the complete absence of MeCP2 in male mice. Studies of female Mecp2(+/-) mice have been limited because of potential phenotypic variability due to X chromosome inactivation effects. To determine whether reproducible and reliable phenotypes can be detected Mecp2(+/-) mice, we analyzed Mecp2(+/-) mice of two different F1 hybrid isogenic backgrounds and at young and old ages using several neurobehavioral and physiological assays. Here, we report a multitude of phenotypes in female Mecp2(+/-) mice, some presenting as early as 5 weeks of life. We demonstrate that Mecp2(+/-) mice recapitulate several aspects of typical RTT and show that mosaic expression of MeCP2 does not preclude the use of female mice in behavioral and molecular studies. Importantly, we uncover several behavioral abnormalities that are present in two genetic backgrounds and report on phenotypes that are unique to one background. These findings provide a framework for pre-clinical studies aimed at improving the constellation of phenotypes in a mouse model of RTT.


Asunto(s)
Conducta Animal , Proteína 2 de Unión a Metil-CpG/genética , Animales , Reacción de Prevención , Miedo , Femenino , Masculino , Ratones , Actividad Motora , Reflejo de Sobresalto , Respiración , Conducta Social , Aumento de Peso , Inactivación del Cromosoma X
14.
Hum Mol Genet ; 22(13): 2626-33, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23462290

RESUMEN

Rett syndrome (RTT), an X-linked postnatal disorder, results from mutations in Methyl CpG-binding protein 2 (MECP2). Survival and breathing in Mecp2(NULL/Y) animals are improved by an N-terminal tripeptide of insulin-like growth factor I (IGF-I) treatment. We determined that Mecp2(NULL/Y) animals also have a metabolic syndrome and investigated whether IGF-I treatment might improve this phenotype. Mecp2(NULL/Y) mice were treated with a full-length IGF-I modified with the addition of polyethylene glycol (PEG-IGF-I), which improves pharmacological properties. Low-dose PEG-IGF-I treatment slightly improved lifespan and heart rate in Mecp2(NULL/Y) mice; however, high-dose PEG-IGF-I decreased lifespan. To determine whether insulinotropic off-target effects of PEG-IGF-I caused the detrimental effect, we treated Mecp2(NULL/Y) mice with insulin, which also decreased lifespan. Thus, the clinical benefit of IGF-I treatment in RTT may critically depend on the dose used, and caution should be taken when initiating clinical trials with these compounds because the beneficial therapeutic window is narrow.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Síndrome Metabólico/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Longevidad/efectos de los fármacos , Masculino , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/genética , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados
15.
Environ Microbiol ; 17(7): 2421-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25403257

RESUMEN

Time series studies have shown that some bacterial taxa occur only at specific times of the year while others are ubiquitous in spite of seasonal shifts in environmental variables. Here, we ask if these ubiquitous clades are generalists that grow over a wide range of environmental conditions, or clusters of strain-level environmental specialists. To answer this question, vibrio strains isolated at a coastal time series were phylogenetically and physiologically characterized revealing three dominant strategies within the vibrio: mesophiles, psychrophiles and apparently generalist broad thermal range clades. Thermal performance curves from laboratory growth rate experiments help explain field observations of relative abundances: the mesophilic clade grows optimally at temperatures 16°C higher than the psychrophilic clade. Strains in the broad thermal range clade all have similar optimal growth temperatures but also exhibit temperature-related tradeoffs with faster growth rates for warm temperature strains and broader growth ranges for strains from cool temperatures. Moreover, the mechanisms of thermal adaptation apparently differ based on evolutionary time scales: shifts in the temperature of maximal growth occur between deeply branching clades but thermal performance curve shape changes on shorter time scales. Thus, apparently ubiquitous clades are likely not generalists, but contain subclusters with distinct environmental preferences.


Asunto(s)
Aclimatación/fisiología , Plancton/fisiología , Vibrio/fisiología , Aclimatación/genética , Evolución Biológica , Ecosistema , Calor , Filogenia , Plancton/genética , Plancton/aislamiento & purificación , Vibrio/genética , Vibrio/aislamiento & purificación
16.
Proc Natl Acad Sci U S A ; 108(5): 2142-7, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245341

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by the expansion of a CAG repeat encoding a polyglutamine tract in Ataxin-1 (ATXN1). Both WT and mutant ATXN1 interact with 14-3-3 proteins, and 14-3-3 overexpression stabilizes ATXN1 levels in cells and increases ATXN1 toxicity in flies. To determine whether reducing 14-3-3 levels might mitigate SCA1 pathogenesis, we bred Sca1(154Q/+) mice to mice lacking one allele of 14-3-3ε. 14-3-3ε haploinsufficiency rescued cerebellar pathology and motor phenotypes but, surprisingly, not weight loss, respiratory dysfunction, or premature lethality. Biochemical studies revealed that reducing 14-3-3ε levels exerted different effects in two brain regions especially vulnerable in SCA1: Although diminishing levels of both WT and mutant ATXN1 in the cerebellum, 14-3-3ε haploinsufficiency did not alter ATXN1 levels in the brainstem. Furthermore, 14-3-3ε haploinsufficiency decreased the incorporation of expanded ATXN1 into its large toxic complexes in the cerebellum but not in the brainstem, and the distribution of ATXN1's small and large native complexes differed significantly between the two regions. These data suggest that distinct pathogenic mechanisms operate in different vulnerable brain regions, adding another level of complexity to SCA1 pathogenesis.


Asunto(s)
Proteínas 14-3-3/genética , Haploinsuficiencia , Ataxias Espinocerebelosas/genética , Alelos , Animales , Ataxina-1 , Ataxinas , Encéfalo/patología , Línea Celular , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fenotipo
17.
Microbiol Resour Announc ; 13(3): e0120523, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38376339

RESUMEN

Metagenome-assembled genomes were generated for two xenic cyanobacterial strains collected from aquatic sources in Kenya and sequenced by NovaSeq S4. Here, we report the classification and genome statistics of Microcystis panniformis WG22 and Limnospira fusiformis LS22.

18.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37090585

RESUMEN

Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS) and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three Vesicular Glutamate Transporters (Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.

19.
Elife ; 122024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287624

RESUMEN

Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS), and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three vesicular glutamate transporters (Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA-derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.


Asunto(s)
Neuronas Adrenérgicas , Ácido Glutámico , Respiración , Transducción de Señal , Proteína 2 de Transporte Vesicular de Glutamato , Animales , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Ratones , Ácido Glutámico/metabolismo , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/fisiología , Reflejo/fisiología , Masculino , Femenino
20.
Sci Rep ; 14(1): 14485, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914648

RESUMEN

Hyperthermia induced by phenethylamines, such as 3,4-methylenedioxymethamphetamine (MDMA), can lead to life-threatening complications and death. Activation of the sympathetic nervous system and subsequent release of norepinephrine and activation of uncoupling proteins have been demonstrated to be the key mediators of phenethylamine-induced hyperthermia (PIH). Recently, the gut microbiome was shown to also play a contributing role in PIH. Here, the hypothesis that bile acids (BAs) produced by the gut microbiome are essential to PIH was tested. Changes in the serum concentrations of unconjugated primary BAs cholic acid (CA) and chenodeoxycholic acid (CDCA) and secondary BA deoxycholic acid (DCA) were measured following MDMA (20 mg/kg, sc) treatment in antibiotic treated and control rats. MDMA-induced a significant hyperthermic response and reduced the serum concentrations of three BAs 60 min post-treatment. Pretreatment with antibiotics (vancomycin, bacitracin and neomycin) in the drinking water for five days resulted in the depletion of BAs and a hypothermic response to MDMA. Gut bacterial communities in the antibiotic-treated group were distinct from the MDMA or saline treatment groups, with decreased microbiome diversity and alteration in taxa. Metagenomic functions inferred using the bioinformatic tool PICRUSt2 on 16S rRNA gene sequences indicated that bacterial genes associated to BA metabolism are less abundant in the antibiotic-MDMA treated group. Overall, these findings suggest that gut bacterial produced BAs might play an important role in MDMA-induced hyperthermia.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Hipertermia , N-Metil-3,4-metilenodioxianfetamina , Microbioma Gastrointestinal/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/farmacología , Animales , Ratas , Masculino , Ácidos y Sales Biliares/metabolismo , Antibacterianos/farmacología , Antibacterianos/efectos adversos , Ratas Sprague-Dawley , ARN Ribosómico 16S/genética , Ácido Desoxicólico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA