Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163468

RESUMEN

The accumulation of mutations in cancer driver genes, such as tumor suppressors or proto-oncogenes, affects cellular homeostasis. Disturbances in the mechanism controlling proliferation cause significant augmentation of cell growth and division due to the loss of sensitivity to the regulatory signals. Nowadays, an increasing number of cases of liver cancer are observed worldwide. Data provided by the International Cancer Genome Consortium (ICGC) have indicated many alterations within gene sequences, whose roles in tumor development are not well understood. A comprehensive analysis of liver cancer (virus-associated hepatocellular carcinoma) samples has identified new and rare mutations in B-Raf proto-oncogene (BRAF) in Japanese HCC patients, as well as BRAF V600E mutations in French HCC patients. However, their function in liver cancer has never been investigated. Here, using functional analysis and next generation sequencing, we demonstrate the tumorigenic effect of BRAF V600E on hepatocytes (THLE-2 cell line). Moreover, we identified genes such as BMP6, CXCL11, IL1B, TBX21, RSAD2, MMP10, and SERPIND1, which are possibly regulated by the BRAF V600E-mediated, mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. Through several functional assays, we demonstrate that BRAF L537M, D594A, and E648G mutations alone are not pathogenic in liver cancer. The investigation of genome mutations and the determination of their impact on cellular processes and functions is crucial to unraveling the molecular mechanisms of liver cancer development.


Asunto(s)
Carcinoma Hepatocelular/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Hígado/química , Fenotipo , RNA-Seq , Transducción de Señal
2.
BMC Bioinformatics ; 22(1): 77, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602113

RESUMEN

BACKGROUND: Somatic variant callers are used to find mutations in sequencing data from cancer samples. They are very sensitive and have high recall, but also may produce low precision data with a large proportion of false positives. Further ad hoc filtering is commonly performed after variant calling and before further analysis. Improving the filtering of somatic variants in a reproducible way represents an unmet need. We have developed Filters for Next Generation Sequencing (FiNGS), software written specifically to address these filtering issues. RESULTS: Developed and tested using publicly available sequencing data sets, we demonstrate that FiNGS reliably improves upon the precision of default variant caller outputs and performs better than other tools designed for the same task. CONCLUSIONS: FiNGS provides researchers with a tool to reproducibly filter somatic variants that is simple to both deploy and use, with filters and thresholds that are fully configurable by the user. It ingests and emits standard variant call format (VCF) files and will slot into existing sequencing pipelines. It allows users to develop and implement their own filtering strategies and simple sharing of these with others.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Ecosistema , Humanos , Mutación , Reproducibilidad de los Resultados , Programas Informáticos
3.
Haematologica ; 106(3): 736-745, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32079689

RESUMEN

Disruption of the normal splicing patterns of RNA is a major factor in the pathogenesis of a number of diseases. Increasingly research has shown the strong influence that splicing patterns can have on cancer progression. Multiple Myeloma is a molecularly heterogeneous disease classified by the presence of key translocations, gene expression profiles and mutations but the splicing patterns in MM remains largely unexplored. We take a multifaceted approach to define the extent and impact of alternative splicing in MM. We look at the spliceosome component, SF3B1, with hotspot mutations (K700E and K666T/Q) shown to result in an increase in alternative splicing in other cancers. We discovered a number of differentially spliced genes in comparison of the SF3B1 mutant and wild type samples that included, MZB1, DYNLL1, TMEM14C and splicing related genes DHX9, CLASRP, and SNRPE. We identified a broader role for abnormal splicing showing clear differences in the extent of novel splice variants in the different translocation groups. We show that a high number of novel splice loci is associated with adverse survival and an ultra-high risk group. The enumeration of patterns of alternative splicing has the potential to refine MM classification and to aid in the risk stratification of patients.


Asunto(s)
Mieloma Múltiple , Empalme Alternativo , Humanos , Mieloma Múltiple/genética , Mutación , Fosfoproteínas/genética , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Factores de Empalme Serina-Arginina , Empalmosomas/genética
4.
BMC Bioinformatics ; 21(1): 144, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293247

RESUMEN

BACKGROUND: The study of cancer genomics continually matures as the number of patient samples sequenced increases. As more data is generated, oncogenic drivers for specific cancer types are discovered along with their associated risks. This in turn leads to potential treatment strategies that pave the way to precision medicine. However, significant financial and analytical barriers make it infeasible to sequence the entire genome of every patient. In contrast, targeted sequencing panels give reliable information on relevant portions of the genome at a fiscally responsible cost. Therefore, we have created the Targeted Panel (TarPan) Viewer, a software tool, to investigate this type of data. RESULTS: TarPan Viewer helps investigators understand data from targeted sequencing data by displaying the information through a web browser interface. Through this interface, investigators can easily observe copy number changes, mutations, and structural events in cancer samples. The viewer runs in R Shiny with a robust SQLite backend and its input is generated from bioinformatic algorithms reliably described in the literature. Here we show the results from using TarPan Viewer on publicly available follicular lymphoma, breast cancer, and multiple myeloma data. In addition, we have tested and utilized the viewer internally, and this data has been used in high-impact peer-reviewed publications. CONCLUSIONS: We have designed a flexible, simple to setup viewer that is easily adaptable to any type of cancer targeted sequencing, and has already proven its use in a research laboratory environment. Further, we believe with deeper sequencing and/or more targeted application it could be of use in the clinic in conjunction with an appropriate targeted sequencing panel as a cost-effective diagnostic test, especially in cancers such as acute leukemia or diffuse large B-cell lymphoma that require rapid interventions.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Programas Informáticos , Algoritmos , Neoplasias de la Mama/genética , Femenino , Dosificación de Gen , Genoma Humano , Genómica , Humanos , Linfoma Folicular/genética , Mieloma Múltiple/genética , Mutación , Medicina de Precisión , Navegador Web
5.
Blood ; 132(6): 587-597, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29884741

RESUMEN

Understanding the profile of oncogene and tumor suppressor gene mutations with their interactions and impact on the prognosis of multiple myeloma (MM) can improve the definition of disease subsets and identify pathways important in disease pathobiology. Using integrated genomics of 1273 newly diagnosed patients with MM, we identified 63 driver genes, some of which are novel, including IDH1, IDH2, HUWE1, KLHL6, and PTPN11 Oncogene mutations are significantly more clonal than tumor suppressor mutations, indicating they may exert a bigger selective pressure. Patients with more driver gene abnormalities are associated with worse outcomes, as are identified mechanisms of genomic instability. Oncogenic dependencies were identified between mutations in driver genes, common regions of copy number change, and primary translocation and hyperdiploidy events. These dependencies included associations with t(4;14) and mutations in FGFR3, DIS3, and PRKD2; t(11;14) with mutations in CCND1 and IRF4; t(14;16) with mutations in MAF, BRAF, DIS3, and ATM; and hyperdiploidy with gain 11q, mutations in FAM46C, and MYC rearrangements. These associations indicate that the genomic landscape of myeloma is predetermined by the primary events upon which further dependencies are built, giving rise to a nonrandom accumulation of genetic hits. Understanding these dependencies may elucidate potential evolutionary patterns and lead to better treatment regimens.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Mutagénesis , Oncogenes , Células Clonales , Análisis Mutacional de ADN , ADN de Neoplasias/genética , Conjuntos de Datos como Asunto , Dosificación de Gen , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Genómica , Humanos , Pérdida de Heterocigocidad , Mieloma Múltiple/patología , Mutación , Pronóstico , Translocación Genética , Resultado del Tratamiento , Secuenciación del Exoma
6.
Haematologica ; 105(4): 1055-1066, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31221783

RESUMEN

MYC is a widely acting transcription factor and its deregulation is a crucial event in many human cancers. MYC is important biologically and clinically in multiple myeloma, but the mechanisms underlying its dysregulation are poorly understood. We show that MYC rearrangements are present in 36.0% of newly diagnosed myeloma patients, as detected in the largest set of next generation sequencing data to date (n=1,267). Rearrangements were complex and associated with increased expression of MYC and PVT1, but not other genes at 8q24. The highest effect on gene expression was detected in cases where the MYC locus is juxtaposed next to super-enhancers associated with genes such as IGH, IGK, IGL, TXNDC5/BMP6, FAM46C and FOXO3 We identified three hotspots of recombination at 8q24, one of which is enriched for IGH-MYC translocations. Breakpoint analysis indicates primary myeloma rearrangements involving the IGH locus occur through non-homologous end joining, whereas secondary MYC rearrangements occur through microhomology-mediated end joining. This mechanism is different to lymphomas, where non-homologous end joining generates MYC rearrangements. Rearrangements resulted in overexpression of key genes and chromatin immunoprecipitation-sequencing identified that HK2, a member of the glucose metabolism pathway, is directly over-expressed through binding of MYC at its promoter.


Asunto(s)
Genes myc , Mieloma Múltiple , ARN Largo no Codificante/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Humanos , Hibridación Fluorescente in Situ , Mieloma Múltiple/genética , Proteína Disulfuro Isomerasas , Translocación Genética
7.
Br J Haematol ; 187(3): 319-327, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31218679

RESUMEN

Single agent daratumumab has shown clinical activity in relapsed, refractory multiple myeloma (RRMM). The Intergroupe Francophone du Myélome 2014-04 trial was designed to further investigate daratumumab in combination with dexamethasone in triple RRMM patients. Patients received daratumumab infusions in combination with weekly dexamethasone until disease progression or unacceptable toxicity. Fifty-seven patients were included in the trial and evaluable for response. The overall response rate and the clinical benefit rate were 33% (n = 19) and 48% (n = 27), respectively. Five (8·8%) patients achieved a very good partial response or better. The median time to response was 4 weeks. For responding patients, the median progression-free survival was 6·6 months, compared to 3·7 months (3·0-5·5) for those with a minimal or stable disease. The median overall survival (OS) for all patients was 16·7 months (11·2-24·0). For responding patients, the median OS was 23·23 months, whereas that of patients with progressive disease was 2·97 months. The incidence of infusion-related reactions was 37%; all cases were manageable and did not lead to dose reduction or permanent treatment discontinuation. These data demonstrate that treatment with daratumumab and dexamethasone results in a meaningful long-term benefit with an acceptable safety profile for patients with triple RRMM.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Mieloma Múltiple/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Dexametasona/administración & dosificación , Dexametasona/efectos adversos , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/mortalidad , Tasa de Supervivencia
8.
Blood ; 130(14): 1639-1643, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827410

RESUMEN

Recent studies suggest that the evolutionary history of a cancer is important in forecasting clinical outlook. To gain insight into the clonal dynamics of multiple myeloma (MM) and its possible influence on patient outcomes, we analyzed whole exome sequencing tumor data for 333 patients from Myeloma XI, a UK phase 3 trial and 434 patients from the CoMMpass study, all of which had received immunomodulatory drug (IMiD) therapy. By analyzing mutant allele frequency distributions in tumors, we found that 17% to 20% of MM is under neutral evolutionary dynamics. These tumors are associated with poorer patient survival in nonintensively treated patients, which is consistent with the reduced therapeutic efficacy of microenvironment-modulating IMiDs. Our findings provide evidence that knowledge of the evolutionary history of MM has relevance for predicting patient outcomes and personalizing therapy.


Asunto(s)
Frecuencia de los Genes , Factores Inmunológicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mutación , Talidomida/análogos & derivados , Talidomida/uso terapéutico , Exoma/efectos de los fármacos , Femenino , Flujo Genético , Humanos , Inmunosupresores/uso terapéutico , Estimación de Kaplan-Meier , Lenalidomida , Masculino , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/patología , Pronóstico , Microambiente Tumoral/efectos de los fármacos
9.
J Hepatol ; 68(5): 959-969, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29360550

RESUMEN

BACKGROUND & AIMS: Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. METHODS: We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. RESULTS: We identified 32 significantly and commonly mutated genes including TP53, KRAS, SMAD4, NF1, ARID1A, PBRM1, and ATR, some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1, BRCA2, RAD51D, MLH1, or MSH2 were detected in 11% (16/146) of BTC patients. CONCLUSIONS: BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. LAY SUMMARY: We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes were detected in 11% of patients with BTC. BTCs have distinct genetic features including somatic events and germline predisposition.


Asunto(s)
Neoplasias del Sistema Biliar/genética , Colangiocarcinoma/genética , Mutación , Oncogenes , Neoplasias del Sistema Biliar/patología , Colangiocarcinoma/patología , Análisis Mutacional de ADN , Epigénesis Genética , Dosificación de Gen , Predisposición Genética a la Enfermedad , Genómica , Mutación de Línea Germinal , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Mutación INDEL , Italia , Japón , Polimorfismo de Nucleótido Simple , Pronóstico , Secuenciación del Exoma , Secuenciación Completa del Genoma
10.
J Hepatol ; 66(2): 363-373, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27742377

RESUMEN

BACKGROUND & AIMS: Patients with hepatocellular carcinoma (HCC) have a high-risk of multi-centric (MC) tumor occurrence due to a strong carcinogenic background in the liver. In addition, they have a high risk of intrahepatic metastasis (IM). Liver tumors withIM or MC are profoundly different in their development and clinical outcome. However, clinically or pathologically discriminating between IM and MC can be challenging. This study investigated whether IM or MC could be diagnosed at the molecular level. METHODS: We performed whole genome and RNA sequencing analyses of 49 tumors including two extra-hepatic metastases, and one nodule-in-nodule tumor from 23 HCC patients. RESULTS: Sequencing-based molecular diagnosis using somatic single nucleotide variation information showed higher sensitivity compared to previous techniques due to the inclusion of a larger number of mutation events. This proved useful in cases, which showed inconsistent clinical diagnoses. In addition, whole genome sequencing offered advantages in profiling of other genetic alterations, such as structural variations, copy number alterations, and variant allele frequencies, and helped to confirm the IM/MCdiagnosis. Divergent alterations between IM tumors with sorafenib treatment, long time-intervals, or tumor-in-tumor nodules indicated high intra-tumor heterogeneity, evolution, and clonal switching of liver cancers. CONCLUSIONS: It is important to analyze the differences between IM tumors, in addition to IM/MC diagnosis, before selecting a therapeutic strategy for multiple tumors in the liver. LAY SUMMARY: Whole genome sequencing of multiple liver tumors enabled the accuratediagnosis ofmulti-centric occurrence and intrahepatic metastasis using somatic single nucleotide variation information. In addition, genetic discrepancies between tumors help us to understand the physical changes during recurrence and cancer spread.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metástasis de la Neoplasia , Neoplasias Primarias Múltiples , Adulto , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Variaciones en el Número de Copia de ADN , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Japón , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/terapia , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/patología , Neoplasias Primarias Múltiples/terapia , Selección de Paciente , Secuenciación Completa del Genoma/métodos
11.
Blood ; 125(5): 831-40, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25428216

RESUMEN

The acquisition of the cytogenetic abnormalities hyperdiploidy or translocations into the immunoglobulin gene loci are considered as initiating events in the pathogenesis of myeloma and were often assumed to be mutually exclusive. These lesions have clinical significance; hyperdiploidy or the presence of the t(11;14) translocation is associated with a favorable outcome, whereas t(4;14), t(14;16), and t(14;20) are unfavorable. Poor outcomes are magnified when lesions occur in association with other high-risk features, del17p and +1q. Some patients have coexistence of both good and poor prognostic lesions, and there has been no consensus on their risk status. To address this, we have investigated their clinical impact using cases in the Myeloma IX study (ISRCTN68454111) and shown that the coexistence of hyperdiploidy or t(11;14) does not abrogate the poor prognosis associated with adverse molecular lesions, including translocations. We have also used single-cell analysis to study cases with coexistent translocations and hyperdiploidy to determine how these lesions cosegregate within the clonal substructure, and we have demonstrated that hyperdiploidy may precede IGH translocation in a proportion of patients. These findings have important clinical and biological implications, as we conclude patients with coexistence of adverse lesions and hyperdiploidy should be considered high risk and treated accordingly.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Diploidia , Regulación Neoplásica de la Expresión Génica , Cadenas Pesadas de Inmunoglobulina/genética , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Translocación Genética , Anciano , Cromosomas Humanos Par 11 , Cromosomas Humanos Par 14 , Cromosomas Humanos Par 16 , Cromosomas Humanos Par 20 , Cromosomas Humanos Par 4 , Análisis Citogenético , Femenino , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Mieloma Múltiple/inmunología , Mieloma Múltiple/mortalidad , Pronóstico , Transducción de Señal , Análisis de la Célula Individual , Análisis de Supervivencia
12.
Haematologica ; 102(9): 1617-1625, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28550183

RESUMEN

Monoclonal gammopathy of undetermined significance is a pre-malignant precursor of multiple myeloma with a 1% risk of progression per year. Although targeted analyses have shown the presence of specific genetic abnormalities such as IGH translocations, RB1 deletion, 1q gain, hyperdiploidy or RAS gene mutations, little is known about the molecular mechanism of malignant transformation. We performed whole exome sequencing together with comparative genomic hybridization plus single nucleotide polymorphism array analysis in 33 flow-cytometry-separated abnormal plasma cell samples from patients with monoclonal gammopathy of undetermined significance to describe somatic gene mutations and chromosome changes at the genome-wide level. Non-synonymous mutations and copy-number alterations were present in 97.0% and in 60.6% of cases, respectively. Importantly, the number of somatic mutations was significantly lower in monoclonal gammopathy of undetermined significance than in myeloma (P<10-4) and we identified six genes that were significantly mutated in myeloma (KRAS, NRAS, DIS3, HIST1H1E, EGR1 and LTB) within the monoclonal gammopathy of undetermined significance dataset. We also found a positive correlation with increasing chromosome changes and somatic gene mutations. IGH translocations, comprising t(4;14), t(11;14), t(14;16) and t(14;20), were present in 27.3% of cases and in a similar frequency to myeloma, consistent with the primary lesion hypothesis. MYC translocations and TP53 deletions or mutations were not detected in samples from patients with monoclonal gammopathy of undetermined significance, indicating that they may be drivers of progression to myeloma. Data from this study show that monoclonal gammopathy of undetermined significance is genetically similar to myeloma, however overall genetic abnormalities are present at significantly lower levels in monoclonal gammopathy of undetermined significant than in myeloma.


Asunto(s)
Cromosomas Humanos/genética , Gammopatía Monoclonal de Relevancia Indeterminada/genética , Mieloma Múltiple/genética , Proteínas de Neoplasias/genética , Translocación Genética , Femenino , Citometría de Flujo , Humanos , Masculino , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Mieloma Múltiple/patología
14.
Eur J Haematol ; 97(6): 568-575, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27157252

RESUMEN

Monoclonal gammopathy of undetermined significance (MGUS) is a benign condition with an approximate 1% annual risk of symptomatic plasma cell disorder development, mostly to multiple myeloma (MM). We performed genomewide screening of copy-number alterations (CNAs) in 90 MGUS and 33 MM patients using high-density DNA microarrays. We identified CNAs in a smaller proportion of MGUS (65.6%) than in MM (100.0%, P = 1.31 × 10-5 ) and showed median number of CNAs is lower in MGUS (3, range 0-22) than in MM (13, range 4-38, P = 1.82 × 10-10 ). In the MGUS cohort, the most frequent losses were located at 1p (5.6%), 6q (6.7%), 13q (30.0%), 14q (14.4%), 16q (8.9%), 21q (5.6%), and gains at 1q (23.3%), 2p (6.7%), 6p (13.3%), and Xq (7.8%). Hyperdiploidy was detected in 38.9% of MGUS cases, and the most frequent whole chromosome gains were 3 (25.6%), 5 (23.3%), 9 (37.8%), 15 (23.3%), and 19 (32.2%). We also identified CNAs such as 1p, 6q, 8p, 12p, 13q, 16q losses, 1q gain and hypodiploidy, which are potentially associated with an adverse prognosis in MGUS. In summary, we showed that MGUS is similar to MM in that it is a genetically heterogeneous disorder, but overall cytogenetic instability is lower than in MM, which confirms that genetic abnormalities play important role in monoclonal gammopathies.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Genómica , Gammopatía Monoclonal de Relevancia Indeterminada/genética , Aberraciones Cromosómicas , Hibridación Genómica Comparativa , Progresión de la Enfermedad , Femenino , Inestabilidad Genómica , Genómica/métodos , Humanos , Masculino , Gammopatía Monoclonal de Relevancia Indeterminada/diagnóstico , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética
15.
Genes Chromosomes Cancer ; 54(2): 91-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25287954

RESUMEN

Risk stratification in myeloma requires an accurate assessment of the presence of a range of molecular abnormalities including the differing IGH translocations and the recurrent copy number abnormalities that can impact clinical behavior. Currently, interphase fluorescence in situ hybridization is used to detect these abnormalities. High failure rates, slow turnaround, cost, and labor intensiveness make it difficult and expensive to use in routine clinical practice. Multiplex ligation-dependent probe amplification (MLPA), a molecular approach based on a multiplex polymerase chain reaction method, offers an alternative for the assessment of copy number changes present in the myeloma genome. Here, we provide evidence showing that MLPA is a powerful tool for the efficient detection of copy number abnormalities and when combined with expression assays, MLPA can detect all of the prognostically relevant molecular events which characterize presenting myeloma. This approach opens the way for a molecular diagnostic strategy that is efficient, high throughput, and cost effective.


Asunto(s)
Biomarcadores de Tumor/genética , Mieloma Múltiple/genética , Adulto , Anciano , Anciano de 80 o más Años , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Mieloma Múltiple/diagnóstico , Reacción en Cadena de la Polimerasa Multiplex , Valor Predictivo de las Pruebas
16.
Blood ; 122(2): 219-26, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23699600

RESUMEN

Outcome in multiple myeloma is highly variable and a better understanding of the factors that influence disease biology is essential to understand and predict behavior in individual patients. In the present study, we analyzed combined genomewide DNA methylation and gene expression data of patients treated in the Medical Research Council Myeloma IX trial. We used these data to identify epigenetically repressed tumor suppressor genes with prognostic relevance in myeloma. We identified 195 genes with changes in methylation status that were significantly associated with prognosis. Combining DNA methylation and gene expression data led to the identification of the epigenetically regulated tumor modulating genes GPX3, RBP1, SPARC, and TGFBI. Hypermethylation of these genes was associated with significantly shorter overall survival, independent of age, International Staging System score, and adverse cytogenetics. The 4 differentially methylated and expressed genes are known to mediate important tumor suppressive functions including response to chemotherapy (TGFBI), interaction with the microenvironment (SPARC), retinoic acid signaling (RBP1), and the response to oxidative stress (GPX3), which could explain the prognostic impact of their differential methylation. Assessment of the DNA methylation status of the identified genes could contribute to the molecular characterization of myeloma, which is prerequisite for an individualized treatment approach.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Mieloma Múltiple/genética , Adulto , Anciano , Anciano de 80 o más Años , Azacitidina/análogos & derivados , Azacitidina/farmacología , Aberraciones Cromosómicas , Metilación de ADN/efectos de los fármacos , Decitabina , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/mortalidad , Osteonectina , Fenotipo , Pronóstico , Factor de Crecimiento Transformador beta1/genética , Proteínas Supresoras de Tumor/genética
17.
Blood ; 121(17): 3413-9, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23435460

RESUMEN

Translocations in myeloma are thought to occur solely in mature B cells in the germinal center through class switch recombination (CSR). We used a targeted captured technique followed by massively parallel sequencing to determine the exact breakpoints in both the immunoglobulin heavy chain (IGH) locus and the partner chromosome in 61 presentation multiple myeloma samples. The majority of samples (62%) have a breakpoint within the switch regions upstream of the IGH constant genes and are generated through CSR in a mature B cell. However, the proportion of CSR translocations is not consistent between cytogenetic subgroups. We find that 100% of t(4;14) are CSR-mediated; however, 21% of t(11;14) and 25% of t(14;20) are generated through DH-JH recombination activation gene-mediated mechanisms, indicating they occur earlier in B-cell development at the pro-B-cell stage in the bone marrow. These 2 groups also generate translocations through receptor revision, as determined by the breakpoints and mutation status of the segments used in 10% and 50% of t(11;14) and t(14;20) samples, respectively. The study indicates that in a significant number of cases the translocation-based etiological events underlying myeloma may arise at the pro-B-cell hematological progenitor cell level, much earlier in B-cell development than was previously thought.


Asunto(s)
Rotura Cromosómica , Centro Germinal/patología , Cadenas Pesadas de Inmunoglobulina/genética , Mieloma Múltiple/genética , Células Precursoras de Linfocitos B/patología , Translocación Genética/genética , Médula Ósea/metabolismo , Médula Ósea/patología , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 20/genética , ADN de Neoplasias/genética , Centro Germinal/metabolismo , Recombinación Homóloga , Humanos , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Reacción en Cadena de la Polimerasa , Células Precursoras de Linfocitos B/metabolismo
19.
Blood ; 120(5): 1077-86, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22573403

RESUMEN

We have used whole exome sequencing to compare a group of presentation t(4;14) with t(11;14) cases of myeloma to define the mutational landscape. Each case was characterized by a median of 24.5 exonic nonsynonymous single-nucleotide variations, and there was a consistently higher number of mutations in the t(4;14) group, but this number did not reach statistical significance. We show that the transition and transversion rates in the 2 subgroups are similar, suggesting that there was no specific mechanism leading to mutation differentiating the 2 groups. Only 3% of mutations were seen in both groups, and recurrently mutated genes include NRAS, KRAS, BRAF, and DIS3 as well as DNAH5, a member of the axonemal dynein family. The pattern of mutation in each group was distinct, with the t(4;14) group being characterized by deregulation of chromatin organization, actin filament, and microfilament movement. Recurrent RAS pathway mutations identified subclonal heterogeneity at a mutational level in both groups, with mutations being present as either dominant or minor subclones. The presence of subclonal diversity was confirmed at a single-cell level using other tumor-acquired mutations. These results are consistent with a distinct molecular pathogenesis underlying each subgroup and have important impacts on targeted treatment strategies. The Medical Research Council Myeloma IX trial is registered under ISRCTN68454111.


Asunto(s)
Cromosomas Humanos Par 11 , Cromosomas Humanos Par 14 , Cromosomas Humanos Par 4 , Evolución Clonal/genética , Heterogeneidad Genética , Mieloma Múltiple/genética , Translocación Genética/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 4/genética , Ensayos Clínicos como Asunto , Evolución Clonal/fisiología , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Análisis por Micromatrices , Modelos Biológicos , Mutación/fisiología , Transducción de Señal/genética , Estudios de Validación como Asunto
20.
Genes Chromosomes Cancer ; 52(9): 817-22, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23765574

RESUMEN

IGH translocations in myeloma are a primary event and determine the prognostic outcome of a patient. These events are characterized by FISH and classical cytogenetics, but in a small proportion of samples a translocation involving the IGH locus can be detected but the partner chromosome cannot be identified. These cases are usually genetically complex and are the result of cryptic events that cannot be discerned at the resolution of FISH. Here we analyzed a sample with an unidentified translocation partner using a targeted capture and massively parallel sequencing. We identified the partner chromosome as a t(7;14) with the breakpoint upstream of EGFR. This sample over-expresses the target oncogene, EGFR. This case represents a rare and novel translocation in myeloma, from which a targeted personalized treatment, in the form of EGFR inhibitors, which are commonly used in other cancer types, could be used.


Asunto(s)
Receptores ErbB/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Genes erbB-1 , Mieloma Múltiple/genética , Translocación Genética , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 7/genética , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Cariotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA