Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 59(3): 426-36, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26190260

RESUMEN

Human sister chromatids at metaphase are primarily linked by centromeric cohesion, forming the iconic X shape. Premature loss of centromeric cohesion disrupts orderly mitotic progression. Shugoshin (Sgo1) binds to and protects cohesin at inner centromeres. The kinetochore kinase Bub1 phosphorylates histone H2A at T120 (H2A-pT120) and recruits Sgo1 to kinetochores, 0.5 µm from inner centromeres. Here, we show that Sgo1 is a direct reader of the H2A-pT120 mark. Bub1 also recruits RNA polymerase II (Pol II) to unattached kinetochores and promotes active transcription at mitotic kinetochores. Mitosis-specific inactivation of Pol II traps Sgo1 at kinetochores and weakens centromeric cohesion. Sgo1 interacts with Pol II in human cells and with RNA in vitro. We propose that Pol II-dependent transcription enables kinetochore-bound Sgo1 initially recruited by H2A-pT120 to reach cohesin embedded in centromeric chromatin. Our study implicates mitotic transcription in targeting regulatory factors to highly compacted mitotic chromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Histonas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Células HeLa , Humanos , Cinetocoros/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transcripción Genética , Cohesinas
2.
EMBO J ; 33(17): 1960-76, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25024437

RESUMEN

The antimitotic anti-cancer drugs, including taxol, perturb spindle dynamics, and induce prolonged, spindle checkpoint-dependent mitotic arrest in cancer cells. These cells then either undergo apoptosis triggered by the intrinsic mitochondrial pathway or exit mitosis without proper cell division in an adaptation pathway. Using a genome-wide small interfering RNA (siRNA) screen in taxol-treated HeLa cells, we systematically identify components of the mitotic apoptosis and adaptation pathways. We show that the Mad2 inhibitor p31(comet) actively promotes mitotic adaptation through cyclin B1 degradation and has a minor separate function in suppressing apoptosis. Conversely, the pro-apoptotic Bcl2 family member, Noxa, is a critical initiator of mitotic cell death. Unexpectedly, the upstream components of the mitochondrial apoptosis pathway and the mitochondrial fission protein Drp1 contribute to mitotic adaption. Our results reveal crosstalk between the apoptosis and adaptation pathways during mitotic arrest.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Mitosis , Paclitaxel/farmacología , ARN Interferente Pequeño/análisis , Adaptación Fisiológica , Perfilación de la Expresión Génica , Células HeLa , Humanos , ARN Interferente Pequeño/genética
3.
Mol Cell ; 36(2): 207-18, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19854131

RESUMEN

Orthologs of the yeast telomere protein Stn1 are present in plants, but other components of the Cdc13/Stn1/Ten1 (CST) complex have only been found in fungi. Here we report the identification of conserved telomere maintenance component 1 (CTC1) in plants and vertebrates. CTC1 encodes an approximately 140 kDa telomere-associated protein predicted to contain multiple OB-fold domains. Arabidopsis mutants null for CTC1 display a severe telomere deprotection phenotype accompanied by a rapid onset of developmental defects and sterility. Telomeric and subtelomeric tracts are dramatically eroded, and chromosome ends exhibit increased G overhangs, recombination, and end-to-end fusions. AtCTC1 both physically and genetically interacts with AtSTN1. Depletion of human CTC1 by RNAi triggers a DNA damage response, chromatin bridges, increased G overhangs, and sporadic telomere loss. These data indicate that CTC1 participates in telomere maintenance in diverse species and that a CST-like complex is required for telomere integrity in multicellular organisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de las Plantas/metabolismo , Secuencia Conservada , Células Eucariotas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Anafase , Línea Celular Tumoral , Inestabilidad Genómica , Humanos , Hibridación Fluorescente in Situ , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica , Recombinación Genética/genética , Telómero/metabolismo
4.
PLoS Genet ; 10(6): e1004419, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24922507

RESUMEN

Translesion synthesis (TLS) enables DNA replication through damaged bases, increases cellular DNA damage tolerance, and maintains genomic stability. The sliding clamp PCNA and the adaptor polymerase Rev1 coordinate polymerase switching during TLS. The polymerases Pol η, ι, and κ insert nucleotides opposite damaged bases. Pol ζ, consisting of the catalytic subunit Rev3 and the regulatory subunit Rev7, then extends DNA synthesis past the lesion. Here, we show that Rev7 binds to the transcription factor TFII-I in human cells. TFII-I is required for TLS and DNA damage tolerance. The TLS function of TFII-I appears to be independent of its role in transcription, but requires homodimerization and binding to PCNA. We propose that TFII-I bridges PCNA and Pol ζ to promote TLS. Our findings extend the general principle of component sharing among divergent nuclear processes and implicate TLS deficiency as a possible contributing factor in Williams-Beuren syndrome.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Proteínas Mad2/metabolismo , Factores de Transcripción TFII/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/biosíntesis , ADN Polimerasa Dirigida por ADN/biosíntesis , Inestabilidad Genómica , Células HEK293 , Células HeLa , Humanos , Proteínas Mad2/biosíntesis , Proteínas Mad2/genética , Proteínas Nucleares/biosíntesis , Nucleotidiltransferasas/biosíntesis , Antígeno Nuclear de Célula en Proliferación/biosíntesis , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción TFII/biosíntesis , Factores de Transcripción TFII/metabolismo
5.
J Biol Chem ; 290(4): 2431-43, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25505175

RESUMEN

The spindle checkpoint ensures accurate chromosome segregation by monitoring kinetochore-microtubule attachment. Unattached or tensionless kinetochores activate the checkpoint and enhance the production of the mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20. MCC is a critical checkpoint inhibitor of the anaphase-promoting complex/cyclosome, a ubiquitin ligase required for anaphase onset. The N-terminal region of BubR1 binds to both Cdc20 and Mad2, thus nucleating MCC formation. The middle region of human BubR1 (BubR1M) also interacts with Cdc20, but the nature and function of this interaction are not understood. Here we identify two critical motifs within BubR1M that contribute to Cdc20 binding and anaphase-promoting complex/cyclosome inhibition: a destruction box (D box) and a phenylalanine-containing motif termed the Phe box. A BubR1 mutant lacking these motifs is defective in MCC maintenance in mitotic human cells but is capable of supporting spindle-checkpoint function. Thus, the BubR1M-Cdc20 interaction indirectly contributes to MCC homeostasis. Its apparent dispensability in the spindle checkpoint might be due to functional duality or redundant, competing mechanisms.


Asunto(s)
Cadherinas/metabolismo , Proteínas Cdc20/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Antígenos CD , Ciclo Celular , Silenciador del Gen , Glutatión Transferasa/metabolismo , Células HeLa , Homeostasis , Humanos , Cinetocoros/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo , Huso Acromático , Ubiquitina/metabolismo
6.
EMBO J ; 30(16): 3309-21, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21743438

RESUMEN

Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution.


Asunto(s)
Centrómero/metabolismo , ADN Helicasas/fisiología , ADN/metabolismo , Nucleosomas/metabolismo , RecQ Helicasas/fisiología , Anafase , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Células HeLa , Histonas/metabolismo , Humanos , Micronúcleos con Defecto Cromosómico , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/fisiología
7.
Proc Natl Acad Sci U S A ; 109(45): 18419-24, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23091007

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) promotes anaphase onset and mitotic exit through ubiquitinating securin and cyclin B1. The mitotic APC/C activator, the cell division cycle 20 (Cdc20) protein, directly interacts with APC/C degrons--the destruction (D) and KEN boxes. APC/C(Cdc20) is the target of the spindle checkpoint. Checkpoint inhibition of APC/C(Cdc20) requires the binding of a BubR1 KEN box to Cdc20. How APC/C recognizes substrates is not understood. We report the crystal structures of human Cdc20 alone or bound to a BubR1 KEN box. Cdc20 has a disordered N-terminal region and a C-terminal WD40 ß propeller with a preformed KEN-box-binding site at its top face. We identify a second conserved surface at the side of the Cdc20 ß propeller as a D-box-binding site. The D box of securin, but not its KEN box, is critical for securin ubiquitination by APC/C(Cdc20). Although both motifs contribute to securin ubiquitination by APC/C(Cdh1), securin mutants lacking either motif are efficiently ubiquitinated. Furthermore, D-box peptides diminish the ubiquitination of KEN-box substrates by APC/C(Cdh1), suggesting possible competition between the two motifs. Our results indicate the lack of strong positive cooperativity between the two degrons of securin. We propose that low-cooperativity, multisite target recognition enables APC/C to robustly ubiquitinate diverse substrates and helps to drive cell cycle oscillations.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Cdc20 , Secuencia Conservada , Humanos , Modelos Moleculares , Mutagénesis/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato , Ubiquitinación
8.
Proc Natl Acad Sci U S A ; 105(50): 19815-20, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19064932

RESUMEN

Telomeres shield the natural ends of chromosomes from nucleolytic attack, recognition as double-strand breaks, and inappropriate processing by DNA repair machinery. The trimeric Stn1/Ten1/Cdc13 complex is critical for chromosome end protection in Saccharomyces cerevisiae, while vertebrate telomeres are protected by shelterin, a complex of six proteins that does not include STN1 or TEN1. Recent studies demonstrate that Stn1 and Ten1 orthologs in Schizosaccharomyces pombe contribute to telomere integrity in a complex that is distinct from the shelterin components, Pot1 and Tpp1. Thus, chromosome-end protection may be mediated by distinct subcomplexes of telomere proteins. Here we report the identification of a STN1 gene in Arabidopsis that is essential for chromosome-end protection. AtSTN1 encodes an 18-kDa protein bearing a single oligonucleotide/oligosaccharide binding fold with significant sequence similarity to the yeast Stn1 proteins. Plants null for AtSTN1 display an immediate onset of growth and developmental defects and reduced fertility. These outward phenotypes are accompanied by catastrophic loss of telomeric and subtelomeric DNA, high levels of end-to-end chromosome fusions, increased G-overhang signals, and elevated telomere recombination. Thus, AtSTN1 is a crucial component of the protective telomere cap in Arabidopsis, and likely in other multicellular eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de las Plantas/metabolismo , Telómero/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas de las Plantas/genética , Datos de Secuencia Molecular , Mutación , Telómero/genética , Telómero/ultraestructura
9.
Proc Natl Acad Sci U S A ; 104(46): 18145-50, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17989233

RESUMEN

Telomeres have the paradoxical ability of protecting linear chromosome ends from DNA damage sensors by using these same proteins as essential components of their maintenance machinery. We have previously shown that the absence of ataxia telangiectasia mutated (ATM), a central regulator of the DNA damage response, accelerates the onset of genome instability in telomerase-deficient Arabidopsis, without increasing the rate of bulk telomere shortening. Here, we examine individual telomere tracts through successive plant generations using both fluorescence situ in hybridization (FISH) and primer extension telomere repeat amplification (PETRA). Unexpectedly, we found that the onset of profound developmental defects and abundant end-to-end chromosome fusions in fifth generation (G(5)) atm tert mutants required the presence of only one critically shortened telomere. Parent progeny analysis revealed that the short telomere arose as a consequence of an unusually large telomere rapid deletion (TRD) event. The most dramatic TRD was detected in atm tert mutants that had undergone meiosis. Notably, in contrast to TRD, alternative lengthening of telomeres (ALT) was suppressed in the absence of ATM. Finally, we show that size differences between telomeres on homologous chromosome ends are greater for atm tert than tert plants. Altogether, these findings suggest a dual role for ATM in regulating telomere size by promoting elongation of short telomeres and by preventing the accumulation of cells that harbor large telomere deletions.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Telómero , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Cartilla de ADN , Hibridación Fluorescente in Situ , Mutación
10.
Cell Cycle ; 14(12): 1873-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25892155

RESUMEN

Genome stability is ensured by multiple surveillance mechanisms that monitor the duplication, segregation, and integrity of the genome throughout the cell cycle. Depletion of components of the spliceosome, a macromolecular machine essential for mRNA maturation and gene expression, has been associated with increased DNA damage and cell cycle defects. However, the specific role for the spliceosome in these processes has remained elusive, as different cell cycle defects have been reported depending on the specific spliceosome subunit depleted. Through a detailed cell cycle analysis after spliceosome depletion, we demonstrate that the spliceosome is required for progression through multiple phases of the cell cycle. Strikingly, the specific cell cycle phenotype observed after spliceosome depletion correlates with the extent of depletion. Partial depletion of a core spliceosome component results in defects at later stages of the cell cycle (G2 and mitosis), whereas a more complete depletion of the same component elicits an early cell cycle arrest in G1. We propose a quantitative model in which different functional dosages of the spliceosome are required for different cell cycle transitions.


Asunto(s)
Ciclo Celular , Daño del ADN , Empalmosomas/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/análisis , Citometría de Flujo , Fase G1 , Fase G2 , Regulación de la Expresión Génica , Células HeLa , Humanos , Mitosis , Fenotipo , Empalme del ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
11.
Mol Biol Cell ; 22(22): 4227-35, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21937719

RESUMEN

The spindle checkpoint senses unattached or improperly attached kinetochores during mitosis, inhibits the anaphase-promoting complex or cyclosome (APC/C), and delays anaphase onset to prevent aneuploidy. The mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20 is a critical APC/C-inhibitory checkpoint complex in human cells. At the metaphase-anaphase transition, the spindle checkpoint turns off, and MCC disassembles to allow anaphase onset. The molecular mechanisms of checkpoint inactivation are poorly understood. A major unresolved issue is the role of Cdc20 autoubiquitination in this process. Although Cdc20 autoubiquitination can promote Mad2 dissociation from Cdc20, a nonubiquitinatable Cdc20 mutant still dissociates from Mad2 during checkpoint inactivation. Here, we show that depletion of p31(comet) delays Mad2 dissociation from Cdc20 mutants that cannot undergo autoubiquitination. Thus both p31(comet) and ubiquitination of Cdc20 are critical mechanisms of checkpoint inactivation. They act redundantly to promote Mad2 dissociation from Cdc20.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Anafase/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Mad2 , Mitosis , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , Proteínas Represoras/metabolismo , Huso Acromático/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA