Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349364

RESUMEN

BACKGROUND: Cytochrome bd complexes are respiratory oxidases found exclusively in prokaryotes that are important during infection for numerous bacterial pathogens. METHODS: In silico docking was employed to screen approved drugs for their ability to bind to the quinol site of Escherichia coli cytochrome bd-I. Respiratory inhibition was assessed with oxygen electrodes using membranes isolated from E. coli and methicillin-resistant Staphylococcus aureus strains expressing single respiratory oxidases (ie, cytochromes bd, bo', or aa3). Growth/viability assays were used to measure bacteriostatic and bactericidal effects. RESULTS: The steroid drugs ethinylestradiol and quinestrol inhibited E. coli bd-I activity with median inhibitory concentration (IC50) values of 47 ± 28.9 µg/mL (158 ± 97.2 µM) and 0.2 ± 0.04 µg/mL (0.5 ± 0.1 µM), respectively. Quinestrol inhibited growth of an E. coli "bd-I only" strain with an IC50 of 0.06 ± 0.02 µg/mL (0.2 ± 0.07 µM). Growth of an S. aureus "bd only" strain was inhibited by quinestrol with an IC50 of 2.2 ± 0.43 µg/mL (6.0 ± 1.2 µM). Quinestrol exhibited potent bactericidal effects against S. aureus but not E. coli. CONCLUSIONS: Quinestrol inhibits cytochrome bd in E. coli and S. aureus membranes and inhibits the growth of both species, yet is only bactericidal toward S. aureus.

2.
PLoS Biol ; 19(6): e3001248, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34111116

RESUMEN

The speed of muscle contraction is related to body size; muscles in larger species contract at slower rates. Since contraction speed is a property of the myosin isoform expressed in a muscle, we investigated how sequence changes in a range of muscle myosin II isoforms enable this slower rate of muscle contraction. We considered 798 sequences from 13 mammalian myosin II isoforms to identify any adaptation to increasing body mass. We identified a correlation between body mass and sequence divergence for the motor domain of the 4 major adult myosin II isoforms (ß/Type I, IIa, IIb, and IIx), suggesting that these isoforms have adapted to increasing body mass. In contrast, the non-muscle and developmental isoforms show no correlation of sequence divergence with body mass. Analysis of the motor domain sequence of ß-myosin (predominant myosin in Type I/slow and cardiac muscle) from 67 mammals from 2 distinct clades identifies 16 sites, out of 800, associated with body mass (padj < 0.05) but not with the clade (padj > 0.05). Both clades change the same small set of amino acids, in the same order from small to large mammals, suggesting a limited number of ways in which contraction velocity can be successfully manipulated. To test this relationship, the 9 sites that differ between human and rat were mutated in the human ß-myosin to match the rat sequence. Biochemical analysis revealed that the rat-human ß-myosin chimera functioned like the native rat myosin with a 2-fold increase in both motility and in the rate of ADP release from the actin-myosin crossbridge (the step that limits contraction velocity). Thus, these sequence changes indicate adaptation of ß-myosin as species mass increased to enable a reduced contraction velocity and heart rate.


Asunto(s)
Contracción Muscular/fisiología , Miosina Tipo II/química , Adaptación Fisiológica , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Peso Corporal , Línea Celular , Secuencia Conservada , Humanos , Filogenia , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratas
3.
Pharmacol Res ; 199: 107043, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128855

RESUMEN

In the life sciences, there is an ongoing discussion about a perceived 'reproducibility crisis'. However, it remains unclear to which extent the perceived lack of reproducibility is the consequence of issues that can be tackled and to which extent it may be the consequence of unrealistic expectations of the technical level of reproducibility. Large-scale, multi-institutional experimental replication studies are very cost- and time-intensive. This Perspective suggests an alternative, complementary approach: meta-research using sociological and philosophical methodologies to examine researcher trust in data. An improved understanding of the criteria used by researchers to judge data reliability will provide crucial, initial evidence on the actual scale of the reproducibility crisis and on measures to tackle it.


Asunto(s)
Confianza , Reproducibilidad de los Resultados , Humanos
4.
Nucleic Acids Res ; 50(W1): W13-W20, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35412635

RESUMEN

3DLigandSite is a web tool for the prediction of ligand-binding sites in proteins. Here, we report a significant update since the first release of 3DLigandSite in 2010. The overall methodology remains the same, with candidate binding sites in proteins inferred using known binding sites in related protein structures as templates. However, the initial structural modelling step now uses the newly available structures from the AlphaFold database or alternatively Phyre2 when AlphaFold structures are not available. Further, a sequence-based search using HHSearch has been introduced to identify template structures with bound ligands that are used to infer the ligand-binding residues in the query protein. Finally, we introduced a machine learning element as the final prediction step, which improves the accuracy of predictions and provides a confidence score for each residue predicted to be part of a binding site. Validation of 3DLigandSite on a set of 6416 binding sites obtained 92% recall at 75% precision for non-metal binding sites and 52% recall at 75% precision for metal binding sites. 3DLigandSite is available at https://www.wass-michaelislab.org/3dligandsite. Users submit either a protein sequence or structure. Results are displayed in multiple formats including an interactive Mol* molecular visualization of the protein and the predicted binding sites.


Asunto(s)
Bases de Datos de Proteínas , Proteínas , Sitios de Unión , Ligandos , Aprendizaje Automático , Unión Proteica , Proteínas/química
5.
J Med Virol ; 95(3): e28686, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36938992

RESUMEN

Recent findings in permanent cell lines suggested that SARS-CoV-2 Omicron BA.1 induces a stronger interferon response than Delta. Here, we show that BA.1 and BA.5 but not Delta induce an antiviral state in air-liquid interface cultures of primary human bronchial epithelial cells and primary human monocytes. Both Omicron subvariants caused the production of biologically active types I (α/ß) and III (λ) interferons and protected cells from super-infection with influenza A viruses. Notably, abortive Omicron infection of monocytes was sufficient to protect monocytes from influenza A virus infection. Interestingly, while influenza-like illnesses surged during the Delta wave in England, their spread rapidly declined upon the emergence of Omicron. Mechanistically, Omicron-induced interferon signaling was mediated via double-stranded RNA recognition by MDA5, as MDA5 knockout prevented it. The JAK/STAT inhibitor baricitinib inhibited the Omicron-mediated antiviral response, suggesting it is caused by MDA5-mediated interferon production, which activates interferon receptors that then trigger JAK/STAT signaling. In conclusion, our study (1) demonstrates that only Omicron but not Delta induces a substantial interferon response in physiologically relevant models, (2) shows that Omicron infection protects cells from influenza A virus super-infection, and (3) indicates that BA.1 and BA.5 induce comparable antiviral states.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Inhibidores de las Cinasas Janus , Humanos , SARS-CoV-2 , Interferones , Antivirales
6.
J Med Virol ; 95(3): e28652, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897017

RESUMEN

The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox (monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is affected by toxic side-effects (brincidofovir, cidofovir), limited availability (tecovirimat), and potentially by resistance formation. Hence, additional, readily available drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquinoline antibiotic with a favourable safety profile in humans, inhibited the replication of 12 mpox virus isolates from the current outbreak in primary cultures of human keratinocytes and fibroblasts and a skin explant model by interference with host cell signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance development. Nitroxoline remained effective against the tecovirimat-resistant strain and increased the anti-mpox virus activity of tecovirimat and brincidofovir. Moreover, nitroxoline inhibited bacterial and viral pathogens that are often co-transmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for the treatment of mpox due to both antiviral and antimicrobial activity.


Asunto(s)
Reposicionamiento de Medicamentos , Mpox , Nitroquinolinas , Humanos , Antibacterianos/farmacología , Antivirales/farmacología , Cidofovir , Mpox/tratamiento farmacológico , Nitroquinolinas/farmacología
7.
Pharmacol Res ; 188: 106671, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36681368

RESUMEN

Cancer drug development is hindered by high clinical attrition rates, which are blamed on weak predictive power by preclinical models and limited replicability of preclinical findings. However, the technically feasible level of replicability remains unknown. To fill this gap, we conducted an analysis of data from the NCI60 cancer cell line screen (2.8 million compound/cell line experiments), which is to our knowledge the largest depository of experiments that have been repeatedly performed over decades. The findings revealed profound intra-laboratory data variability, although all experiments were executed following highly standardised protocols that avoid all known confounders of data quality. All compound/ cell line combinations with > 100 independent biological replicates displayed maximum GI50 (50% growth inhibition) fold changes (highest/ lowest GI50) > 5% and 70.5% displayed maximum fold changes > 1000. The highest maximum fold change was 3.16 × 1010 (lowest GI50: 7.93 ×10-10 µM, highest GI50: 25.0 µM). FDA-approved drugs and experimental agents displayed similar variation. Variability remained high after outlier removal, when only considering experiments that tested drugs at the same concentration range, and when only considering NCI60-provided quality-controlled data. In conclusion, high variability is an intrinsic feature of anti-cancer drug testing, even among standardised experiments in a world-leading research environment. Awareness of this inherent variability will support realistic data interpretation and inspire research to improve data robustness. Further research will have to show whether the inclusion of a wider variety of model systems, such as animal and/ or patient-derived models, may improve data robustness.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/farmacología , Técnicas de Cultivo de Célula
8.
Bioinformatics ; 37(16): 2282-2288, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33560365

RESUMEN

MOTIVATION: SARS-CoV-2 is a novel coronavirus currently causing a pandemic. Here, we performed a combined in-silico and cell culture comparison of SARS-CoV-2 and the closely related SARS-CoV. RESULTS: Many amino acid positions are differentially conserved between SARS-CoV-2 and SARS-CoV, which reflects the discrepancies in virus behaviour, i.e. more effective human-to-human transmission of SARS-CoV-2 and higher mortality associated with SARS-CoV. Variations in the S protein (mediates virus entry) were associated with differences in its interaction with ACE2 (cellular S receptor) and sensitivity to TMPRSS2 (enables virus entry via S cleavage) inhibition. Anti-ACE2 antibodies more strongly inhibited SARS-CoV than SARS-CoV-2 infection, probably due to a stronger SARS-CoV-2 S-ACE2 affinity relative to SARS-CoV S. Moreover, SARS-CoV-2 and SARS-CoV displayed differences in cell tropism. Cellular ACE2 and TMPRSS2 levels did not indicate susceptibility to SARS-CoV-2. In conclusion, we identified genomic variation between SARS-CoV-2 and SARS-CoV that may reflect the differences in their clinical and biological behaviour. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

9.
Curr Issues Mol Biol ; 43(3): 1212-1225, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34698067

RESUMEN

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Antígeno CD47/metabolismo , COVID-19/epidemiología , COVID-19/metabolismo , Pandemias , Receptores Inmunológicos/metabolismo , SARS-CoV-2/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal/inmunología , Donantes de Sangre , Western Blotting/métodos , Bronquios/citología , COVID-19/patología , COVID-19/virología , Células CACO-2 , Células Epiteliales/metabolismo , Células Epiteliales/virología , Voluntarios Sanos , Humanos , Monocitos/metabolismo , Monocitos/virología , Reacción en Cadena de la Polimerasa/métodos , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
11.
Bioinformatics ; 35(19): 3553-3558, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31093647

RESUMEN

MOTIVATION: The potential of the Bombali virus, a novel Ebolavirus, to cause disease in humans remains unknown. We have previously identified potential determinants of Ebolavirus pathogenicity in humans by analysing the amino acid positions that are differentially conserved (specificity determining positions; SDPs) between human pathogenic Ebolaviruses and the non-pathogenic Reston virus. Here, we include the many Ebolavirus genome sequences that have since become available into our analysis and investigate the amino acid sequence of the Bombali virus proteins at the SDPs that discriminate between human pathogenic and non-human pathogenic Ebolaviruses. RESULTS: The use of 1408 Ebolavirus genomes (196 in the original analysis) resulted in a set of 166 SDPs (reduced from 180), 146 (88%) of which were retained from the original analysis. This indicates the robustness of our approach and refines the set of SDPs that distinguish human pathogenic Ebolaviruses from Reston virus. At SDPs, Bombali virus shared the majority of amino acids with the human pathogenic Ebolaviruses (63.25%). However, for two SDPs in VP24 (M136L, R139S) that have been proposed to be critical for the lack of Reston virus human pathogenicity because they alter the VP24-karyopherin interaction, the Bombali virus amino acids match those of Reston virus. Thus, Bombali virus may not be pathogenic in humans. Supporting this, no Bombali virus-associated disease outbreaks have been reported, although Bombali virus was isolated from fruit bats cohabitating in close contact with humans, and anti-Ebolavirus antibodies that may indicate contact with Bombali virus have been detected in humans. AVAILABILITY AND IMPLEMENTATION: Data files are available from https://github.com/wasslab/EbolavirusSDPsBioinformatics2019. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Ebolavirus , Secuencia de Aminoácidos , Brotes de Enfermedades , Fiebre Hemorrágica Ebola , Humanos , Virulencia
12.
Bioinformatics ; 33(13): 1911-1915, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28200119

RESUMEN

MOTIVATION: Ebola viruses are not pathogenic but can be adapted to replicate and cause disease in rodents. Here, we used a structural bioinformatics approach to analyze the mutations associated with Ebola virus adaptation to rodents to elucidate the determinants of host-specific Ebola virus pathogenicity. RESULTS: We identified 33 different mutations associated with Ebola virus adaptation to rodents in the proteins GP, NP, L, VP24 and VP35. Only VP24, GP and NP were consistently found mutated in rodent-adapted Ebola virus strains. Fewer than five mutations in these genes seem to be required for the adaptation of Ebola viruses to a new species. The role of mutations in GP and NP is not clear. However, three VP24 mutations located in the protein interface with karyopherin α5 may enable VP24 to inhibit karyopherins and subsequently the host interferon response. Three further VP24 mutations change hydrogen bonding or cause conformational changes. Hence, there is evidence that few mutations including crucial mutations in VP24 enable Ebola virus adaptation to new hosts. Since Reston virus, the only non-human pathogenic Ebolavirus species circulates in pigs in Asia, this raises concerns that few mutations may result in novel human pathogenic Ebolaviruses. CONTACT: m.n.wass@kent.ac.uk , m.michaelis@kent.ac.uk or j.s.rossman@kent.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Ebolavirus/genética , Mutación , Roedores/virología , Proteínas Virales/genética , Animales , Cricetinae , Ebolavirus/metabolismo , Ebolavirus/patogenicidad , Evolución Molecular , Cobayas , Humanos , Ratones , Conformación Proteica , Proteínas Virales/metabolismo
14.
BMC Genomics ; 18(Suppl 5): 566, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28812539

RESUMEN

BACKGROUND: Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. RESULTS: As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. CONCLUSION: Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.


Asunto(s)
Ebolavirus/patogenicidad , Simulación de Dinámica Molecular , Proteínas Virales/metabolismo , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/metabolismo , Humanos , Conformación Proteica , Proteínas Virales/química , alfa Carioferinas/metabolismo
15.
BMC Genomics ; 18(Suppl 5): 550, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28812535

RESUMEN

BACKGROUND: Cystinuria is an inherited disease that results in the formation of cystine stones in the kidney, which can have serious health complications. Two genes (SLC7A9 and SLC3A1) that form an amino acid transporter are known to be responsible for the disease. Variants that cause the disease disrupt amino acid transport across the cell membrane, leading to the build-up of relatively insoluble cystine, resulting in formation of stones. Assessing the effects of each mutation is critical in order to provide tailored treatment options for patients. We used various computational methods to assess the effects of cystinuria associated mutations, utilising information on protein function, evolutionary conservation and natural population variation of the two genes. We also analysed the ability of some methods to predict the phenotypes of individuals with cystinuria, based on their genotypes, and compared this to clinical data. RESULTS: Using a literature search, we collated a set of 94 SLC3A1 and 58 SLC7A9 point mutations known to be associated with cystinuria. There are differences in sequence location, evolutionary conservation, allele frequency, and predicted effect on protein function between these mutations and other genetic variants of the same genes that occur in a large population. Structural analysis considered how these mutations might lead to cystinuria. For SLC7A9, many mutations swap hydrophobic amino acids for charged amino acids or vice versa, while others affect known functional sites. For SLC3A1, functional information is currently insufficient to make confident predictions but mutations often result in the loss of hydrogen bonds and largely appear to affect protein stability. Finally, we showed that computational predictions of mutation severity were significantly correlated with the disease phenotypes of patients from a clinical study, despite different methods disagreeing for some of their predictions. CONCLUSIONS: The results of this study are promising and highlight the areas of research which must now be pursued to better understand how mutations in SLC3A1 and SLC7A9 cause cystinuria. The application of our approach to a larger data set is essential, but we have shown that computational methods could play an important role in designing more effective personalised treatment options for patients with cystinuria.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Neutros/química , Cistinuria/genética , Modelos Moleculares , Mutación Puntual , Índice de Severidad de la Enfermedad , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Biología Computacional , Cistinuria/metabolismo , Estudios de Asociación Genética , Humanos , Medicina de Precisión , Conformación Proteica
16.
Environ Microbiol ; 19(1): 106-118, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27486032

RESUMEN

The sulfate-reducing bacteria of the Desulfovibrio genus make three distinct modified tetrapyrroles, haem, sirohaem and adenosylcobamide, where sirohydrochlorin acts as the last common biosynthetic intermediate along the branched tetrapyrrole pathway. Intriguingly, D. vulgaris encodes two sirohydrochlorin chelatases, CbiKP and CbiKC , that insert cobalt/iron into the tetrapyrrole macrocycle but are thought to be distinctly located in the periplasm and cytoplasm respectively. Fusing GFP onto the C-terminus of CbiKP confirmed that the protein is transported to the periplasm. The structure-function relationship of CbiKP was studied by constructing eleven site-directed mutants and determining their chelatase activities, oligomeric status and haem binding abilities. Residues His154 and His216 were identified as essential for metal-chelation of sirohydrochlorin. The tetrameric form of the protein is stabilized by Arg54 and Glu76, which form hydrogen bonds between two subunits. His96 is responsible for the binding of two haem groups within the main central cavity of the tetramer. Unexpectedly, CbiKP is shown to bind two additional haem groups through interaction with His103. Thus, although still retaining cobaltochelatase activity, the presence of His96 and His103 in CbiKP , which are absent from all other known bacterial cobaltochelatases, has evolved CbiKP a new function as a haem binding protein permitting it to act as a potential haem chaperone or transporter.


Asunto(s)
Proteínas Bacterianas/genética , Desulfovibrio vulgaris/enzimología , Desulfovibrio vulgaris/genética , Hemo/análogos & derivados , Liasas/genética , Tetrapirroles/metabolismo , Uroporfirinas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Desulfovibrio vulgaris/metabolismo , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Hemo/metabolismo , Proteínas de Unión al Hemo , Hemoproteínas/genética , Histidina/metabolismo
17.
Biochem Soc Trans ; 44(4): 973-8, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27528741

RESUMEN

The ongoing Ebola virus (also known as Zaire ebolavirus, a member of the Ebolavirus family) outbreak in West Africa has so far resulted in >28000 confirmed cases compared with previous Ebolavirus outbreaks that affected a maximum of a few hundred individuals. Hence, Ebolaviruses impose a much greater threat than we may have expected (or hoped). An improved understanding of the virus biology is essential to develop therapeutic and preventive measures and to be better prepared for future outbreaks by members of the Ebolavirus family. Computational investigations can complement wet laboratory research for biosafety level 4 pathogens such as Ebolaviruses for which the wet experimental capacities are limited due to a small number of appropriate containment laboratories. During the current West Africa outbreak, sequence data from many Ebola virus genomes became available providing a rich resource for computational analysis. Here, we consider the studies that have already reported on the computational analysis of these data. A range of properties have been investigated including Ebolavirus evolution and pathogenicity, prediction of micro RNAs and identification of Ebolavirus specific signatures. However, the accuracy of the results remains to be confirmed by wet laboratory experiments. Therefore, communication and exchange between computational and wet laboratory researchers is necessary to make maximum use of computational analyses and to iteratively improve these approaches.


Asunto(s)
Biología Computacional/métodos , Brotes de Enfermedades/prevención & control , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , África Occidental/epidemiología , Ebolavirus/clasificación , Ebolavirus/genética , Evolución Molecular , Genoma Viral/genética , Genómica/métodos , Humanos , Proteínas Virales/genética
18.
Nucleic Acids Res ; 42(Web Server issue): W331-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24906884

RESUMEN

Unravelling the genotype-phenotype relationship in humans remains a challenging task in genomics studies. Recent advances in sequencing technologies mean there are now thousands of sequenced human genomes, revealing millions of single nucleotide variants (SNVs). For non-synonymous SNVs present in proteins the difficulties of the problem lie in first identifying those nsSNVs that result in a functional change in the protein among the many non-functional variants and in turn linking this functional change to phenotype. Here we present VarMod (Variant Modeller) a method that utilises both protein sequence and structural features to predict nsSNVs that alter protein function. VarMod develops recent observations that functional nsSNVs are enriched at protein-protein interfaces and protein-ligand binding sites and uses these characteristics to make predictions. In benchmarking on a set of nearly 3000 nsSNVs VarMod performance is comparable to an existing state of the art method. The VarMod web server provides extensive resources to investigate the sequence and structural features associated with the predictions including visualisation of protein models and complexes via an interactive JSmol molecular viewer. VarMod is available for use at http://www.wasslab.org/varmod.


Asunto(s)
Variación Genética , Modelos Moleculares , Proteínas/genética , Programas Informáticos , Algoritmos , Sitios de Unión , Humanos , Internet , Ligandos , Conformación Proteica , Análisis de Secuencia de Proteína , Máquina de Vectores de Soporte
19.
Malar J ; 13: 315, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25124718

RESUMEN

BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.


Asunto(s)
Metabolismo Energético , Flagelos/fisiología , Células Germinativas/química , Glucólisis , Plasmodium berghei/química , Plasmodium berghei/fisiología , Proteoma/análisis , Animales , Femenino , Locomoción , Masculino , Ratones
20.
Nucleic Acids Res ; 40(Web Server issue): W466-70, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22641853

RESUMEN

Only a small fraction of known proteins have been functionally characterized, making protein function prediction essential to propose annotations for uncharacterized proteins. In recent years many function prediction methods have been developed using various sources of biological data from protein sequence and structure to gene expression data. Here we present the CombFunc web server, which makes Gene Ontology (GO)-based protein function predictions. CombFunc incorporates ConFunc, our existing function prediction method, with other approaches for function prediction that use protein sequence, gene expression and protein-protein interaction data. In benchmarking on a set of 1686 proteins CombFunc obtains precision and recall of 0.71 and 0.64 respectively for gene ontology molecular function terms. For biological process GO terms precision of 0.74 and recall of 0.41 is obtained. CombFunc is available at http://www.sbg.bio.ic.ac.uk/combfunc.


Asunto(s)
Proteínas/fisiología , Programas Informáticos , Algoritmos , Expresión Génica , Internet , Mapas de Interacción de Proteínas , Proteínas/química , Proteínas/genética , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA