Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 182(6): 1508-1518.e16, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32783917

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial Parkinson's disease. LRRK2 is a multi-domain protein containing a kinase and GTPase. Using correlative light and electron microscopy, in situ cryo-electron tomography, and subtomogram analysis, we reveal a 14-Å structure of LRRK2 bearing a pathogenic mutation that oligomerizes as a right-handed double helix around microtubules, which are left-handed. Using integrative modeling, we determine the architecture of LRRK2, showing that the GTPase and kinase are in close proximity, with the GTPase closer to the microtubule surface, whereas the kinase is exposed to the cytoplasm. We identify two oligomerization interfaces mediated by non-catalytic domains. Mutation of one of these abolishes LRRK2 microtubule-association. Our work demonstrates the power of cryo-electron tomography to generate models of previously unsolved structures in their cellular environment.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Microtúbulos/metabolismo , Enfermedad de Parkinson/metabolismo , Citoplasma/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Microscopía Electrónica de Transmisión , Microtúbulos/química , Modelos Químicos , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Dominios Proteicos , Repeticiones WD40
2.
Traffic ; 19(3): 215-228, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29352747

RESUMEN

Recently, studies in animal models demonstrate potential roles for clathrin and AP1 in apical protein sorting in epithelial tissue. However, the precise functions of these proteins in apical protein transport remain unclear. Here, we reveal mistargeting of endogenous glycosyl phosphatidyl inositol-anchored proteins (GPI-APs) and soluble secretory proteins in Madin-Darby canine kidney (MDCK) cells upon clathrin heavy chain or AP1 subunit knockdown (KD). Using a novel directional endocytosis and recycling assay, we found that these KD cells are not only affected for apical sorting of GPI-APs in biosynthetic pathway but also for their apical recycling and basal-to-apical transcytosis routes. The apical distribution of the t-SNARE syntaxin 3, which is known to be responsible for selective targeting of various apical-destined cargo proteins in both biosynthetic and endocytic routes, is compromised suggesting a molecular explanation for the phenotype in KD cells. Our results demonstrate the importance of biosynthetic and endocytic routes for establishment and maintenance of apical localization of GPI-APs in polarized MDCK cells.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Antígenos CD59/metabolismo , Clatrina/metabolismo , Complejo 1 de Proteína Adaptadora/genética , Animales , Antígenos CD59/genética , Clatrina/genética , Perros , Células de Riñón Canino Madin Darby , Transporte de Proteínas , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Transcitosis
3.
Microsc Microanal ; 29(29 Suppl 1): 900-901, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613812
4.
Traffic ; 15(12): 1305-29, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25196094

RESUMEN

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a class of lipid anchored proteins expressed on the cell surface of eukaryotes. The potential interaction of GPI-APs with ordered lipid domains enriched in cholesterol and sphingolipids has been proposed to function in the intracellular transport of these lipid anchored proteins. Here, we examined the biological importance of two saturated fatty acids present in the phosphatidylinositol moiety of GPI-APs. These fatty acids are introduced by the action of lipid remodeling enzymes and required for the GPI-AP association within ordered lipid domains. We found that the fatty acid remodeling is not required for either efficient Golgi-to-plasma membrane transport or selective endocytosis via GPI-enriched early endosomal compartment (GEEC)/ clathrin-independent carrier (CLIC) pathway, whereas cholesterol depletion significantly affects both pathways independent of their fatty acid structure. Therefore, the mechanism of cholesterol dependence does not appear to be related to the interaction with ordered lipid domains mediated by two saturated fatty acids. Furthermore, cholesterol extraction drastically releases the unremodeled GPI-APs carrying an unsaturated fatty acid from the cell surface, but not remodeled GPI-APs carrying two saturated fatty acids. This underscores the essential role of lipid remodeling to ensure a stable membrane association of GPI-APs particularly under potential membrane lipid perturbation.


Asunto(s)
Membrana Celular/metabolismo , Endosomas/metabolismo , Ácidos Grasos/química , Proteínas Ligadas a GPI/metabolismo , Animales , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Ácidos Grasos/metabolismo , Proteínas Ligadas a GPI/química , Transporte de Proteínas
5.
Development ; 140(2): 385-94, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23250212

RESUMEN

Sorting of integral membrane proteins plays crucial roles in establishing and maintaining the polarized structures of epithelial cells and neurons. However, little is known about the sorting mechanisms of newly synthesized membrane proteins at the trans-Golgi network (TGN). To identify which genes are essential for these sorting mechanisms, we screened mutants in which the transport of Rhodopsin 1 (Rh1), an apical integral membrane protein in Drosophila photoreceptors, was affected. We found that deficiencies in glycosylphosphatidylinositol (GPI) synthesis and attachment processes cause loss of the apical transport of Rh1 from the TGN and mis-sorting to the endolysosomal system. Moreover, Na(+)K(+)-ATPase, a basolateral membrane protein, and Crumbs (Crb), a stalk membrane protein, were mistransported to the apical rhabdomeric microvilli in GPI-deficient photoreceptors. These results indicate that polarized sorting of integral membrane proteins at the TGN requires the synthesis and anchoring of GPI-anchored proteins. Little is known about the cellular biological consequences of GPI deficiency in animals in vivo. Our results provide new insights into the importance of GPI synthesis and aid the understanding of pathologies involving GPI deficiency.


Asunto(s)
Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosilfosfatidilinositoles/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/metabolismo , Red trans-Golgi/metabolismo , Animales , Membrana Celular/metabolismo , Detergentes/farmacología , Proteínas de Drosophila/metabolismo , Colorantes Fluorescentes/metabolismo , Inmunohistoquímica/métodos , Cinética , Glicoproteínas de Membrana/metabolismo , Microdominios de Membrana/metabolismo , Mutación , Neuronas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
6.
Traffic ; 11(8): 1017-33, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20477992

RESUMEN

Previous studies have shown that yeast glycosylphosphatidylinositol-anchored proteins (GPI-APs) and other secretory proteins are preferentially incorporated into distinct coat protein II (COPII) vesicle populations for their transport from the endoplasmic reticulum (ER) to the Golgi apparatus, and that incorporation of yeast GPI-APs into COPII vesicles requires specific lipid interactions. We compared the ER exit mechanism and segregation of GPI-APs from other secretory proteins in mammalian and yeast cells. We find that, unlike yeast, ER-to-Golgi transport of GPI-APs in mammalian cells does not depend on sphingolipid synthesis. Whereas ER exit of GPI-APs is tightly dependent on Sar1 in mammalian cells, it is much less so in yeast. Furthermore, in mammalian cells, GPI-APs and other secretory proteins are not segregated upon COPII vesicle formation, in contrast to the remarkable segregation seen in yeast. These findings suggest that GPI-APs use different mechanisms to concentrate in COPII vesicles in the two organisms, and the difference might explain their propensity to segregate from other secretory proteins upon ER exit.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Proteínas de la Membrana/metabolismo , Levaduras/metabolismo , Animales , Células CHO , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Cricetinae , Cricetulus , Retículo Endoplásmico/ultraestructura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositoles/química , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Humanos , Proteínas de la Membrana/química , Microsomas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Transporte de Proteínas/fisiología , Esfingolípidos/química , Esfingolípidos/metabolismo , Levaduras/citología
7.
Sci Transl Med ; 14(668): eabq0991, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36288283

RESUMEN

Developing potent therapeutics and effective vaccines are the ultimate goals in controlling infectious diseases. Lassa virus (LASV), the causative pathogen of Lassa fever (LF), infects hundreds of thousands annually, but effective antivirals or vaccines against LASV infection are still lacking. Furthermore, neutralizing antibodies against LASV are rare. Here, we describe biochemical analyses and high-resolution cryo-electron microscopy structures of a therapeutic cocktail of three broadly protective antibodies that target the LASV glycoprotein complex (GPC), previously identified from survivors of multiple LASV infections. Structural and mechanistic analyses reveal compatible neutralizing epitopes and complementary neutralization mechanisms that offer high potency, broad range, and resistance to escape. These antibodies either circumvent or exploit specific glycans comprising the extensive glycan shield of GPC. Further, they require mammalian glycosylation, native GPC cleavage, and proper GPC trimerization. These findings guided engineering of a next-generation GPC antigen suitable for future neutralizing antibody and vaccine discovery. Together, these results explain protective mechanisms of rare, broad, and potent antibodies and identify a strategy for the rational design of therapeutic modalities against LF and related infectious diseases.


Asunto(s)
Fiebre de Lassa , Vacunas Virales , Animales , Humanos , Virus Lassa , Microscopía por Crioelectrón , Anticuerpos Neutralizantes , Epítopos , Glicoproteínas , Polisacáridos , Antivirales , Mamíferos
8.
Traffic ; 10(2): 186-200, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19054390

RESUMEN

Previous biochemical work has revealed two parallel routes of exit from the endoplasmic reticulum (ER) in the yeast Saccharomyces cerevisiae, one seemingly specific for glycosyl-phosphatidylinositol (GPI)-anchored proteins. Using the coat protein II (COPII) mutant sec31-1, we visualized ER exit sites (ERES) and identified three distinct ERES populations in vivo. One contains glycosylated pro-alpha-factor, the second contains the GPI-anchored proteins Cwp2p, Ccw14p and Tos6p and the third is enriched with the hexose transporter, Hxt1p. Concentration of GPI-anchored proteins prior to budding requires anchor remodeling, and Hxt1p incorporation into ERES requires the COPII components Sec12p and Sec16p. Additionally, we have found that GPI-anchored protein ER exit is controlled by the p24 family member Emp24p, whereas ER export of most transmembrane proteins requires the Cornichon homologue Erv14p.


Asunto(s)
Pared Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Pared Celular/genética , Vesículas Citoplasmáticas/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Curr Opin Cell Biol ; 16(4): 350-5, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15261666

RESUMEN

The coat complex COPII forms vesicles at the endoplasmic reticulum to transport a variety of cargo proteins to the Golgi structure. Recent biochemical and structural studies reveal the molecular mechanism of cargo protein recognition by COPII components. Furthermore, there are at least two distinct ER-to-Golgi transport carrier structures carrying different cargo proteins in yeast and mammalian cells, suggesting several distinct mechanisms for the concentration, selection and exit of cargo proteins from the ER. It will be essential to follow the dynamics of transitional ER sites and cargo protein concentration within the ER in order to understand how these transport processes occur in living cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Mamíferos , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Transporte Biológico , Vesículas Cubiertas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Nat Protoc ; 15(6): 2041-2070, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32405053

RESUMEN

Recent advances have made cryogenic (cryo) electron microscopy a key technique to achieve near-atomic-resolution structures of biochemically isolated macromolecular complexes. Cryo-electron tomography (cryo-ET) can give unprecedented insight into these complexes in the context of their natural environment. However, the application of cryo-ET is limited to samples that are thinner than most cells, thereby considerably reducing its applicability. Cryo-focused-ion-beam (cryo-FIB) milling has been used to carve (micromachining) out 100-250-nm-thin regions (called lamella) in the intact frozen cells. This procedure opens a window into the cells for high-resolution cryo-ET and structure determination of biomolecules in their native environment. Further combination with fluorescence microscopy allows users to determine cells or regions of interest for the targeted fabrication of lamellae and cryo-ET imaging. Here, we describe how to prepare lamellae using a microscope equipped with both FIB and scanning electron microscopy modalities. Such microscopes (Aquilos Cryo-FIB/Scios/Helios or CrossBeam) are routinely referred to as dual-beam microscopes, and they are equipped with a cryo-stage for all operations in cryogenic conditions. The basic principle of the described methodologies is also applicable for other types of dual-beam microscopes equipped with a cryo-stage. We also briefly describe how to integrate fluorescence microscopy data for targeted milling and critical considerations for cryo-ET data acquisition of the lamellae. Users familiar with cryo-electron microscopy who get basic training in dual-beam microscopy can complete the protocol within 2-3 d, allowing for several pause points during the procedure.


Asunto(s)
Tomografía con Microscopio Electrónico , Fenómenos Mecánicos , Manejo de Especímenes/instrumentación , Animales , Electrones , Ratones , Células 3T3 NIH
11.
Biochem J ; 414(2): 237-45, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18462190

RESUMEN

In yeast, there are at least two vesicle populations upon ER (endoplasmic reticulum) exit, one containing Gap1p (general aminoacid permease) and a glycosylated alpha-factor, gpalphaF (glycosylated proalpha-factor), and the other containing GPI (glycosylphosphatidylinositol)-anchored proteins, Gas1p (glycophospholipid-anchored surface protein) and Yps1p. We attempted to identify sorting determinants for this protein sorting event in the ER. We found that mutant Gas1 proteins that lack a GPI anchor and/or S/T region (serine- and threonine-rich region), two common characteristic features conserved among yeast GPI-anchored proteins, were still sorted away from Gap1p-containing vesicles. Furthermore, a mutant glycosylated alpha-factor, gpalphaGPI, which contains both the GPI anchor and S/T region from Gas1p, still entered Gap1p-containing vesicles, demonstrating that these conserved characteristics do not prevent proteins from entering Gap1p-containing vesicles. gpalphaF showed severely reduced budding efficiency in the absence of its ER exit receptor Erv29p, and this residual budding product no longer entered Gap1p-containing vesicles. These results suggest that the interaction of gpalphaF with Erv29p is essential for sorting into Gap1p-containing vesicles. We compared the detergent solubility of Gas1p and the gpalphaGPI in the ER with that in ER-derived vesicles. Both GPI-anchored proteins similarly partitioned into the DRM (detergent-resistant membrane) in the ER. Based on the fact that they entered different ER-derived vesicles, we conclude that DRM partitioning of GPI-anchored proteins is not the dominant determinant of protein sorting upon ER exit. Interestingly, upon incorporation into the ER-derived vesicles, gpalphaGPI was no longer detergent-insoluble, in contrast with the persistent detergent insolubility of Gas1p in the ER-derived vesicles. We present different explanations for the different behaviours of GPI-anchored proteins in distinct ER-derived vesicle populations.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aparato de Golgi/metabolismo , Inmunoprecipitación , Sistemas de Lectura Abierta , Unión Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
Chimia (Aarau) ; 63(12): 830-834, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28372605

RESUMEN

The Biochemistry Department at the University of Geneva currently has four full professors, a professor emeritus, one assistant professor, two MER (Maître d'enseignement et de Recherche) and a permanent scientific collaborator. The research interests of the members of the Biochemistry Department are described.

13.
Elife ; 82019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31282858

RESUMEN

The study of bacterial cell biology is limited by difficulties in visualizing cellular structures at high spatial resolution within their native milieu. Here, we visualize Bacillus subtilis sporulation using cryo-electron tomography coupled with cryo-focused ion beam milling, allowing the reconstruction of native-state cellular sections at molecular resolution. During sporulation, an asymmetrically-positioned septum generates a larger mother cell and a smaller forespore. Subsequently, the mother cell engulfs the forespore. We show that the septal peptidoglycan is not completely degraded at the onset of engulfment. Instead, the septum is uniformly and only slightly thinned as it curves towards the mother cell. Then, the mother cell membrane migrates around the forespore in tiny finger-like projections, whose formation requires the mother cell SpoIIDMP protein complex. We propose that a limited number of SpoIIDMP complexes tether to and degrade the peptidoglycan ahead of the engulfing membrane, generating an irregular membrane front.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Peptidoglicano/metabolismo , Esporas Bacterianas/metabolismo , Bacillus subtilis/fisiología , Bacillus subtilis/ultraestructura , Membrana Celular/ultraestructura , Pared Celular/ultraestructura , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Esporas Bacterianas/ultraestructura
14.
Mol Biol Cell ; 13(8): 2664-80, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12181337

RESUMEN

Sterols are essential factors for endocytosis in animals and yeast. To investigate the sterol structural requirements for yeast endocytosis, we created a variety of ergDelta mutants, each accumulating a distinct set of sterols different from ergosterol. Mutant erg2Deltaerg6Delta and erg3Deltaerg6Delta cells exhibit a strong internalization defect of the alpha-factor receptor (Ste2p). Specific sterol structures are necessary for pheromone-dependent receptor hyperphosphorylation, a prerequisite for internalization. The lack of phosphorylation is not due to a defect in Ste2p localization or in ligand-receptor interaction. Contrary to most known endocytic factors, sterols seem to function in internalization independently of actin. Furthermore, sterol structures are required at a postinternalization step of endocytosis. ergDelta cells were able to take up the membrane marker FM4-64, but exhibited defects in FM4-64 movement through endosomal compartments to the vacuole. Therefore, there are at least two roles for sterols in endocytosis. Based on sterol analysis, the sterol structural requirements for these two processes were different, suggesting that sterols may have distinct functions at different places in the endocytic pathway. Interestingly, sterol structures unable to support endocytosis allowed transport of the glycosylphosphatidylinositol-anchored protein Gas1p from the endoplasmic reticulum to Golgi compartment.


Asunto(s)
Endocitosis/fisiología , Esteroles/metabolismo , Factores de Transcripción , Levaduras/fisiología , Actinas/metabolismo , Animales , Citoesqueleto/metabolismo , Estructura Molecular , Fosforilación , Unión Proteica , Receptores del Factor de Conjugación , Receptores de Péptidos/metabolismo , Esteroide Isomerasas/genética , Esteroide Isomerasas/metabolismo , Esteroles/química , Ubiquitina/metabolismo , Levaduras/química , Levaduras/citología , Levaduras/genética
15.
J Phys Chem B ; 121(15): 3871-3881, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28291359

RESUMEN

Cryo-electron tomography (cryo-ET) has rapidly emerged as a powerful tool to investigate the internal, three-dimensional spatial organization of the cell. In parallel, the GPU-based technology to perform spatially resolved stochastic simulations of whole cells has arisen, allowing the simulation of complex biochemical networks over cell cycle time scales using data taken from -omics, single molecule experiments, and in vitro kinetics. By using real cell geometry derived from cryo-ET data, we have the opportunity to imbue these highly detailed structural data-frozen in time-with realistic biochemical dynamics and investigate how cell structure affects the behavior of the embedded chemical reaction network. Here we present two examples to illustrate the challenges and techniques involved in integrating structural data into stochastic simulations. First, a tomographic reconstruction of Saccharomyces cerevisiae is used to construct the geometry of an entire cell through which a simple stochastic model of an inducible genetic switch is studied. Second, a tomogram of the nuclear periphery in a HeLa cell is converted directly to the simulation geometry through which we study the effects of cellular substructure on the stochastic dynamics of gene repression. These simple chemical models allow us to illustrate how to build whole-cell simulations using cryo-ET derived geometry and the challenges involved in such a process.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Simulación de Dinámica Molecular , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/ultraestructura , Células HeLa , Humanos , Procesos Estocásticos
16.
Nat Nanotechnol ; 11(4): 378-87, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26780659

RESUMEN

Nanoscale drug delivery vehicles can facilitate multimodal therapies of cancer by promoting tumour-selective drug release. However, few are effective because cancer cells develop ways to resist and evade treatment. Here, we introduce a photoactivable multi-inhibitor nanoliposome (PMIL) that imparts light-induced cytotoxicity in synchrony with a photoinitiated and sustained release of inhibitors that suppress tumour regrowth and treatment escape signalling pathways. The PMIL consists of a nanoliposome doped with a photoactivable chromophore (benzoporphyrin derivative, BPD) in the lipid bilayer, and a nanoparticle containing cabozantinib (XL184)--a multikinase inhibitor--encapsulated inside. Near-infrared tumour irradiation, following intravenous PMIL administration, triggers photodynamic damage of tumour cells and microvessels, and simultaneously initiates release of XL184 inside the tumour. A single PMIL treatment achieves prolonged tumour reduction in two mouse models and suppresses metastatic escape in an orthotopic pancreatic tumour model. The PMIL offers new prospects for cancer therapy by enabling spatiotemporal control of drug release while reducing systemic drug exposure and associated toxicities.


Asunto(s)
Anilidas/química , Antineoplásicos/química , Liposomas/química , Fármacos Fotosensibilizantes/química , Porfirinas/química , Piridinas/química , Anilidas/farmacocinética , Anilidas/farmacología , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Liposomas/farmacocinética , Liposomas/farmacología , Masculino , Ratones , Fármacos Fotosensibilizantes/farmacocinética , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacocinética , Porfirinas/farmacología , Piridinas/farmacocinética , Piridinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Mol Biol Cell ; 24(12): 2021-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23615438

RESUMEN

Most glycosylphosphatidylinositol-anchored proteins (GPI-APs) are located at the apical surface of epithelial cells. The apical delivery of GPI-APs is believed to result from their association with lipid rafts. We find that overexpression of C-terminally tagged PGAP3 caused predominant production of lysoGPI-APs, an intermediate precursor in the GPI lipid remodeling process in Madin-Darby canine kidney cells. In these cells, produced lysoGPI-APs are not incorporated into detergent-resistant membranes (DRMs) but still are delivered apically, suggesting that GPI-AP association with DRMs is not necessary for apical targeting. In contrast, apical transport of both fully remodeled and lyso forms of GPI-APs is dependent on N-glycosylation, confirming a general role of N-glycans in apical protein transport. We also find that depletion of cholesterol causes apical-to-basolateral retargeting not only of fully remodeled GPI-APs, but also of lysoGPI-APs, as well as endogenous soluble and transmembrane proteins that would normally be targeted to the apical membrane. These findings confirm the essential role for cholesterol in the apical protein targeting and further demonstrate that the mechanism of cholesterol-dependent apical sorting is not related to DRM association of GPI-APs.


Asunto(s)
Membrana Celular/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Western Blotting , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular , Colesterol/metabolismo , Detergentes/farmacología , Perros , Glicosilación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Microscopía Fluorescente , Unión Proteica , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
18.
J Cell Biol ; 194(1): 61-75, 2011 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-21727194

RESUMEN

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Modelos Biológicos , Proteínas de Transporte Vesicular/metabolismo , Animales , Sitios de Unión , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Mol Biol Cell ; 22(16): 2924-36, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21680708

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins are secretory proteins that are attached to the cell surface of eukaryotic cells by a glycolipid moiety. Once GPI anchoring has occurred in the lumen of the endoplasmic reticulum (ER), the structure of the lipid part on the GPI anchor undergoes a remodeling process prior to ER exit. In this study, we provide evidence suggesting that the yeast p24 complex, through binding specifically to GPI-anchored proteins in an anchor-dependent manner, plays a dual role in their selective trafficking. First, the p24 complex promotes efficient ER exit of remodeled GPI-anchored proteins after concentration by connecting them with the COPII coat and thus facilitates their incorporation into vesicles. Second, it retrieves escaped, unremodeled GPI-anchored proteins from the Golgi to the ER in COPI vesicles. Therefore the p24 complex, by sensing the status of the GPI anchor, regulates GPI-anchored protein intracellular transport and coordinates this with correct anchor remodeling.


Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sitios de Unión , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
20.
Mol Biol Cell ; 19(5): 2069-82, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18287539

RESUMEN

Glycosylphosphatidylinositol (GPI), covalently attached to many eukaryotic proteins, not only acts as a membrane anchor but is also thought to be a sorting signal for GPI-anchored proteins that are associated with sphingolipid and sterol-enriched domains. GPI anchors contain a core structure conserved among all species. The core structure is synthesized in two topologically distinct stages on the leaflets of the endoplasmic reticulum (ER). Early GPI intermediates are assembled on the cytoplasmic side of the ER and then are flipped into the ER lumen where a complete GPI precursor is synthesized and transferred to protein. The flipping process is predicted to be mediated by a protein referred as flippase; however, its existence has not been proven. Here we show that yeast Arv1p is an important protein required for the delivery of an early GPI intermediate, GlcN-acylPI, to the first mannosyltransferase of GPI synthesis in the ER lumen. We also provide evidence that ARV1 deletion and mutations in other proteins involved in GPI anchor synthesis affect inositol phosphorylceramide synthesis as well as the intracellular distribution and amounts of sterols, suggesting a role of GPI anchor synthesis in lipid flow from the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Metabolismo de los Lípidos , Manosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilglucosamina/biosíntesis , Transporte Biológico/efectos de los fármacos , Ceramidas/metabolismo , Depsipéptidos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Genes Fúngicos , Glicoesfingolípidos/biosíntesis , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Manosa/biosíntesis , Mutación/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA