Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(8): 7010-7019, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38345334

RESUMEN

The negative Poisson's ratio (NPR) effect usually endows materials with promising ductility and shear resistance, facilitating a wider range of applications. It has been generally acknowledged that alloys show strong advantages in manipulating material properties. Thus, a thought-provoking question arises: how does alloying affect the NPR? In this paper, based on first-principles calculations, we systematically study the NPR in two-dimensional (2D) GaN and AlN, and their alloy of AlxGa1-xN. It is intriguing to find that the NPR in AlxGa1-xN is significantly enhanced compared to the parent materials of GaN and AlN. The underlying mechanism mainly originates from a counter-intuitive increase of the bond angle θ. We further study the microscopic origin of the anomalies by electron orbital analysis as well as electron localization functions. It is revealed that the distribution and movement of electrons change with the applied strain, providing a fundamental view on the effect of strain on lattice parameters and the NPR. The physical origin as revealed in this study deepens the understanding of the NPR and shed light on the future design of modern nanoscale electromechanical devices with fantastic functions based on the auxetic nanomaterials and nanostructures.

2.
Small ; 19(28): e2300734, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36967553

RESUMEN

Lithium metal batteries are promising to become a new generation of energy storage batteries. However, the growth of Li dendrites and the volume expansion of the anode are serious constraints to their commercial implementation. Herein, a controllable strategy is proposed to construct an ultrathin 3D hierarchical host of honeycomb copper micromesh loaded with lithiophilic copper oxide nanowires (CMMC). The uniquely designed 3D hierarchical arrayed skeletons demonstrate a surface-preferred and spatial-selective effect to homogenize local current density and relieve the volume expansion, effectively suppressing the dendrite growth. Employing the constructed CMMC current collector in a half-cell, >400 cycles with 99% coulombic efficiency at 0.5 mA cm-2 is performed. The symmetric battery cycles stably for >2000 h, and the full battery delivers a capacity of 166.6 mAh g-1 . This facile and controllable approach provides an effective strategy for constructing high-performance lithium metal batteries.

3.
Nanotechnology ; 34(17)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36779917

RESUMEN

High thermal conductivity is of great interest due to the novel applications in high-performance heat dissipation for microelectronic devices. Two-dimensional (2D) materials with graphene as a representative have attracted tremendous interest due to the excellent properties, where C23is an emerging 2D allotrope of carbon with a large bandgap. In this paper, by solving the Boltzmann transport equation based onstate-of-the-artfirst-principles calculations, the C23is predicted to have an ultrahigh thermal conductivity of 2051.47 Wm-1K-1, which is on the same order of magnitude as graphene. Based on the comparative analysis among C23, graphene, and penta-graphene, it is shown that the unique spatial structure and the orbital hybridization of C23lead to weak anharmonicity, which results in the large relaxation time of phonons and finally results in ultrahigh thermal conductivity. Our study is expected to promote the comprehensive understanding of thermal transport in C23and shed light on future exploration of novel materials with high thermal conductivity.

4.
Small ; 18(24): e2201628, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35561074

RESUMEN

Flexible transparent energy supplies are extremely essential to the fast-growing flexible electronic systems. However, the general developed flexible transparent energy storage devices are severely limited by the challenges of low energy density, safety issues, and/or poor compatibility. In this work, a freestanding 3D hierarchical metallic micromesh with remarkble optoelectronic properties (T = 89.59% and Rs = 0.23 Ω sq-1 ) and super-flexibility is designed and manufactured for flexible transparent alkaline zinc batteries. The 3D Ni micromesh supported Cu(OH)2 @NiCo bimetallic hydroxide flexible transparent electrode (3D NM@Cu(OH)2 @NiCo BH) is obtained by a combination of photolithography, chemical etching, and electrodeposition. The negative electrode is constructed by electrodeposition of electrochemically active zinc on the surface of Ni@Cu micromesh (Ni@Cu@Zn MM). The metallic micromesh with 3D hierarchical nanoarchitecture can not only ensure low sheet resistance, but also realize high mass loading of active materials and short electron/ion transmission path, which can guarantee high energy density and high-rate capability of the transparent devices. The flexible transparent 3D NM@Cu(OH)2 @NiCo BH electrode realizes a specific capacity of 66.03 µAh cm-2 at 1 mA cm-2 with a transmittance of 63%. Furthermore, the assembled solid-state NiCo-Zn alkaline battery exhibits a desirable energy density/power density of 35.89 µWh cm-2 /2000.26 µW cm-2 with a transmittance of 54.34%.

5.
Phys Chem Chem Phys ; 24(29): 17479-17484, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35822513

RESUMEN

The two-dimensional (2D) materials, represented by graphene, stand out in the electrical industry applications of the future and have been widely studied. As commonly existing in electronic devices, the electric field has been extensively utilized to modulate the performance. However, how the electric field regulates thermal transport is rarely studied. Herein, we investigate the modulation of thermal transport properties by applying an external electric field ranging from 0 to 0.4 V Å-1, with bilayer graphene, monolayer silicene, and germanene as study cases. The monotonically decreasing trend of thermal conductivity in all three materials is revealed. A significant effect on the scattering rate is found to be responsible for the decreased thermal conductivity driven by the electric field. Further evidence shows that the reconstruction of internal electric field and generation of induced charges lead to increased scattering rate from strong phonon anharmonicity. Thus, the ultralow thermal conductivity emerges with the application of external electric fields. Applying an external electric field to regulate thermal conductivity illustrates a constructive idea for highly efficient thermal management.

6.
Phys Chem Chem Phys ; 24(5): 3086-3093, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35040847

RESUMEN

With the miniaturization and integration of nanoelectronic devices, efficient heat removal becomes a key factor affecting their reliable operation. Two-dimensional (2D) materials, with high intrinsic thermal conductivity, good mechanical flexibility, and precisely controllable growth, are widely accepted as ideal candidates for thermal management materials. In this work, by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations, we investigated the thermal conductivity of novel 2D layered MSi2N4 (M = Mo, W). Our results point to a competitive thermal conductivity as large as 162 W m-1 K-1 of monolayer MoSi2N4, which is around two times larger than that of WSi2N4 and seven times larger than that of monolayer MoS2 despite their similar non-planar structures. It is revealed that the high thermal conductivity arises mainly from its large group velocity and low anharmonicity. Our result suggests that MoSi2N4 could be a potential candidate for 2D thermal management materials.

7.
Nanotechnology ; 32(13): 135401, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33296877

RESUMEN

Alloying is a widely employed approach for tuning properties of materials, especially for thermal conductivity which plays a key role in the working liability of electronic devices and the energy conversion efficiency of thermoelectric devices. Commonly, the thermal conductivity of an alloy is acknowledged to be the smallest compared to the parent materials. However, the findings in this study bring some different points of view on the modulation of thermal transport by alloying. The thermal transport properties of monolayer GaN, AlN, and their alloys of Ga x Al1-x N are comparatively investigated by solving the Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of Ga0.25Al0.75N alloy (29.57 Wm-1 K-1) and Ga0.5Al0.5N alloy (21.49 Wm-1 K-1) are found exceptionally high to be between AlN (74.42 Wm-1 K-1) and GaN (14.92 Wm-1 K-1), which violates the traditional knowledge that alloying usually lowers thermal conductivity. The mechanism resides in that, the existence of Al atoms reduces the difference in atomic radius and masses of the Ga0.25Al0.75N alloy, which also induces an isolated optical phonon branch around 18 THz. As a result, the scattering phase space of Ga0.25Al0.75N is largely suppressed compared to GaN. The microscopic analysis from the orbital projected electronic density of states and the electron localization function further provides insight that the alloying process weakens the polarization of bonding in Ga0.25Al0.75N alloy and leads to the increased thermal conductivity. The exceptionally high thermal conductivity of the Ga x Al1-x N alloys and the underlying mechanism as revealed in this study would bring valuable insight for the future research of materials with applications in high-performance thermal management.

8.
Sensors (Basel) ; 19(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174383

RESUMEN

The diesel engine has been a significant component of large-scale mechanical systems for the intelligent manufacturing industry. Because of its complex structure and poor working environment, it has trouble effectively acquiring the representative fault features. Further, fault diagnosis of the diesel engine faces great challenges. This paper presents a new fault diagnosis method for the detection of diesel engine faults under multiple operation conditions instead of conventional methods confined to a single condition. First, an adaptive correlation threshold process is designed as a preprocessing unit to enhance data quality by weakening non-impact region characteristics. Next, a feature extraction method for sound signals based on the Mel frequency cepstrum (MFC) is improved and introduced into the machinery fault diagnosis. Then, the combination of the improved feature and vibrational mode decomposition (VMD) is proposed to incorporate VMD into an effective adaptive decomposition of non-stationary signals to combine it with an excellent feature representation of the vibration signal. Finally, the vector quantization algorithm is adopted to reduce the feature dimensions and generate codebook model bases, which trains the K-Nearest Neighbor classifiers. Five comparative methods were carried out, and the experimental results show that the proposed method offers a good effect of the common valve clearance fault of diesel engines under different conditions.

9.
Nanoscale ; 15(4): 1459-1483, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36541854

RESUMEN

With the development of chip technology, the density of transistors on integrated circuits is increasing and the size is gradually shrinking to the micro-/nanoscale, with the consequent problem of heat dissipation on chips becoming increasingly serious. For device applications, efficient heat dissipation and thermal management play a key role in ensuring device operation reliability. In this review, we summarize the thermal management applications based on 2D materials from both theoretical and experimental perspectives. The regulation approaches of thermal transport can be divided into two main types: intrinsic structure engineering (acting on the intrinsic structure) and non-structure engineering (applying external fields). On one hand, the thermal transport properties of 2D materials can be modulated by defects and disorders, size effect (including length, width, and the number of layers), heterostructures, structure regulation, doping, alloy, functionalizing, and isotope purity. On the other hand, strain engineering, electric field, and substrate can also modulate thermal transport efficiently without changing the intrinsic structure of the materials. Furthermore, we propose a perspective on the topic of using magnetism and light field to modulate the thermal transport properties of 2D materials. In short, we comprehensively review the existing thermal management modulation applications as well as the latest research progress, and conclude with a discussion and perspective on the applications of 2D materials in thermal management, which will be of great significance to the development of next-generation nanoelectronic devices.

10.
J Phys Chem Lett ; 14(43): 9746-9757, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37882443

RESUMEN

Anisotropic heat transfer is crucial for advanced thermal management in nanoelectronics, optoelectronics, thermoelectrics, etc. Traditional approaches modifying thermal conductivity (κ) mostly adjust the magnitude but disregard anisotropy. Herein, by solving the Boltzmann transport equation from first principles, we report κ anisotropy modulation by alloying gallium nitride (GaN) and aluminum nitride (AlN). The alloyed Al0.5Ga0.5N demonstrates reversed κ anisotropy compared to the parent materials, where the preferred thermal transport direction shifts from cross-plane to in-plane. Moreover, the κ anisotropy (κin-plane/κcross-plane) in the Al0.5Ga0.5N alloy is enhanced to 1.63 and 1.51 times that in bulk GaN and AlN, respectively, which can be further enhanced by increased temperature. Deep analysis attributes the alloying reversed κ anisotropy of Al0.5Ga0.5N to the structure distortion-driven phonon group velocity, as well as phonon anharmonicity. The alloying reversed κ anisotropy as reported in this study sheds light on future studies in advanced heat dissipation and intelligent thermal management.

11.
Small Methods ; : e2300792, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37802968

RESUMEN

Emerging flexible and wearable electronic products are placing a compelling demand on lightweight transparent energy storage devices. Owing to their distinguishing features of safety, high specific energy, cycling stability, and rapid charge/discharge advantages, Zn-ion hybrid supercapacitors are a current topic of discussion. However, the trade-off for optical transmittance and energy density remains a great challenge. Here, a high-performance Zn-ion hybrid supercapacitor based on the customizable ultrathin (5 µm), ultralight (0.45 mg cm-2 ), and ultra-transparent (87.6%) Ni micromesh based cathode and Zn micromesh anode with the highest figure of merit (84 843) is proposed. The developed flexible transparent Zn-ion hybrid supercapacitors reveal excellent cycle stability (no decline after 20 000 cycles), high areal energy density (31.69 µWh cm-2 ), and high power density (512 µW cm-2 ). In addition, the assembled solid flexible and transparent Zn-ion hybrid supercapacitor with polyacrylamide gel electrolyte shows extraordinary mechanical properties even under extreme bending and twisting operation. Furthermore, the full device displays a high optical transmittance over 55.04% and can be conformally integrated with diverse devices as a flexible transparent power supply. The fabrication technology offers seamless compatibility with industrial manufacturing, making it an ideal model for the advancement of portable and wearable devices.

12.
Nanoscale ; 14(46): 17401-17408, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36383130

RESUMEN

Two-dimensional materials have attracted significant research interest due to the fantastic properties that are unique to their bulk counterparts. In this paper, from the state-of-the-art first-principles, we predicted the stable structure of a monolayer counterpart of γ-CuI (cuprous iodide) that is a p-type wide bandgap semiconductor. The monolayer CuI presents multifunctional superiority in terms of electronic, optical, and thermal transport properties. Specifically, the ultralow thermal conductivity of 0.116 W m-1 K-1 is predicted for monolayer CuI, which is much lower than those of γ-CuI (0.997 W m-1 K-1) and other typical semiconductors. Moreover, an ultrawide direct bandgap of 3.57 eV is found in monolayer CuI, which is even larger than that of γ-CuI (2.95-3.1 eV), promising for applications in nano-/optoelectronics with better optical performance. The ultralow thermal conductivity and direct wide bandgap of monolayer CuI as reported in this study would promise its potential applications in transparent and wearable electronics.

13.
J Phys Chem Lett ; 12(42): 10353-10358, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34665965

RESUMEN

Two-dimensional Mg2C, one of the typical representative MXene materials, is attracting lots of attention due to its outstanding properties. In this study, we find the thermal conductivity of monolayer Mg2C is more than 2 orders of magnitude lower than graphene and is even lower than MoS2 despite the relatively lighter atoms of Mg and C. Based on the comparative analysis with graphene, silicene, and MoS2, the underlying mechanism is found lying in the unique arrangement of atoms (lighter atoms in the middle plane) and large electronegativity difference in Mg2C. The phonon anharmonicity is strong due to the resonant bonding. In addition, dual band gaps emerge in the phonon dispersion of Mg2C, which limit the phonon-phonon scattering and reduce the phonon relaxation time. This study reveals a new mechanism responsible for low thermal conductivity, which would be helpful for designing thermal functional materials and pave the way for applications in thermoelectrics.

14.
Chem Asian J ; 15(10): 1613-1620, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32227623

RESUMEN

Heterostructure engineering of electrode materials, which is expected to accelerate the ion/electron transport rates driven by a built-in internal electric field at the heterointerface, offers unprecedented promise in improving their cycling stability and rate performance. Herein, carbon nanotubes with Co9 S8 /ZnS heterostructures embedded in a N-doped carbon framework (Co9 S8 /ZnS@NC) have been rationally designed via an in-situ vapor chemical transformation strategy with the aid of thiophene, which not only acted as carbon source for the growth of carbon nanotubes but also as sulfur source for the sulfurization of metal Zn and Co. Density functional theory (DFT) calculation shows an about 3.24 eV electrostatic potential difference between ZnS and Co9 S8 , which results in a strong electrostatic field across the interface that makes electrons transfer from Co9 S8 to the ZnS side. As expected, a stable cycling performance with reversible capacity of 411.2 mAh g-1 at 1000 mA g-1 after 300 cycles, excellent rate capability (324 mAh g-1 at 2000 A g-1 ) and a high percentage of pseudocapacitance contribution (87.5% at 2.2 mv/s) for lithium-ion batteries (LIBs) are achieved. This work provides a possible strategy for designing multicomponent heterostructural materials for application in energy storage and conversion fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA