Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066476

RESUMEN

Insulin levels in the blood oscillate with a variety of periods, including rapid (5-10 min), ultradian (50-120 min), and circadian (24 h). Oscillations of insulin are beneficial for lowering blood glucose and disrupted rhythms are found in people with type 2 diabetes and their close relatives. These in vivo secretion dynamics imply that the oscillatory activity of individual islets of Langerhans are synchronized, although the mechanism for this is not known. One mechanism by which islets may synchronize is negative feedback of insulin on whole-body glucose levels. In previous work, we demonstrated that a negative feedback loop with a small time delay, to account for the time required for islets to be exposed to a new glucose concentration in vivo, results in small 3-6 islet populations synchronizing to produce fast closed-loop oscillations. However, these same islet populations could also produce slow closed-loop oscillations with periods longer than the natural islet oscillation periods. Here, we investigate the origin of the slow oscillations and the bistability with the fast oscillations using larger islet populations (20-50 islets). In contrast to what was observed earlier, larger islet populations mainly synchronize to longer-period oscillations that are approximately twice the delay time used in the feedback loop. A mean-field model was also used as a proxy for a large islet population to uncover the underlying mechanism for the slow rhythm. The heterogeneous intrinsic oscillation periods of the islets interferes with this rhythm mechanism when islet populations are small, and is similar to adding noise to the mean-field model. Thus, the effect of a time delay in the glucose feedback mechanism is similar to other examples of time-delayed systems in biology and may be a viable mechanism for ultradian oscillations.

2.
ACS Omega ; 8(50): 47723-47734, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144114

RESUMEN

The cell-to-cell signaling role of d-amino acids (d-AAs) in the mammalian endocrine system, particularly in the islets of Langerhans, has drawn growing interest for their potential involvement in modulating glucose metabolism. Previous studies found colocalization of serine racemase [produces d-serine (d-Ser)] and d-alanine (d-Ala) within insulin-secreting beta cells and d-aspartate (d-Asp) within glucagon-secreting alpha cells. Expressed in the islets, functional N-methyl-d-aspartate receptors are involved in the modulation of glucose-stimulated insulin secretion and have binding sites for several d-AAs. However, knowledge of the regulation of d-AA levels in the islets during glucose stimulation as well as the response of islets to different levels of extracellular d-AAs is limited. In this study, we determined the intracellular and extracellular levels of d-Ser, d-Ala, and d-Asp in cultures of isolated rodent islets exposed to different levels of extracellular glucose. We found that the intracellular levels of the enantiomers demonstrated large variability and, in general, were not affected by extracellular glucose levels. However, significantly lower levels of extracellular d-Ser and d-Ala were observed in the islet media supplemented with 20 mM concentration of glucose compared to the control condition utilizing 3 mM glucose. Glucose-induced oscillations of intracellular free calcium concentration ([Ca2+]i), a proxy for insulin secretion, were modulated by the exogenous application of d-Ser and d-Ala but not by their l-stereoisomers. Our results provide new insights into the roles of d-AAs in the biochemistry and function of pancreatic islets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA