Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 162(2): 287-299, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26165940

RESUMEN

Spindle assembly requires the coordinated action of multiple cellular structures to nucleate and organize microtubules in a precise spatiotemporal manner. Among them, the contributions of centrosomes, chromosomes, and microtubules have been well studied, yet the involvement of membrane-bound organelles remains largely elusive. Here, we provide mechanistic evidence for a membrane-based, Golgi-derived microtubule assembly pathway in mitosis. Upon mitotic entry, the Golgi matrix protein GM130 interacts with importin α via a classical nuclear localization signal that recruits importin α to the Golgi membranes. Sequestration of importin α by GM130 liberates the spindle assembly factor TPX2, which activates Aurora-A kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GM130, thus linking Golgi membranes to the spindle. Our results reveal an active role for the Golgi in regulating spindle formation to ensure faithful organelle inheritance.


Asunto(s)
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Aurora Quinasa A/metabolismo , Células HeLa , Humanos , Carioferinas/metabolismo , Ratones , Microtúbulos/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Huso Acromático , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
2.
J Cell Sci ; 134(4)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33526712

RESUMEN

Spindle orientation is important in multiple developmental processes as it determines cell fate and function. The orientation of the spindle depends on the assembly of a proper astral microtubule network. Here, we report that the spindle assembly factor TPX2 regulates astral microtubules. TPX2 in the spindle pole area is activated by GM130 (GOLGA2) on Golgi membranes to promote astral microtubule growth. GM130 relieves TPX2 inhibition by competing for importin α1 (KPNA2) binding. Mitotic phosphorylation of importin α at serine 62 (S62) by CDK1 switches its substrate preference from TPX2 to GM130, thereby enabling competition-based activation. Importin α S62A mutation impedes local TPX2 activation and compromises astral microtubule formation, ultimately resulting in misoriented spindles. Blocking the GM130-importin α-TPX2 pathway impairs astral microtubule growth. Our results reveal a novel role for TPX2 in the organization of astral microtubules. Furthermore, we show that the substrate preference of the important mitotic modulator importin α is regulated by CDK1-mediated phosphorylation.


Asunto(s)
Huso Acromático , alfa Carioferinas , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Fosforilación , Huso Acromático/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
3.
Traffic ; 11(11): 1391-400, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21040294

RESUMEN

The Golgi apparatus lies at the heart of the secretory pathway where it receives, modifies and sorts protein cargo to the proper intracellular or extracellular location. Although this secretory function is highly conserved throughout the eukaryotic kingdom, the structure of the Golgi complex is arranged very differently among species. In particular, Golgi membranes in vertebrate cells are integrated into a single compact entity termed the Golgi ribbon that is normally localized in the perinuclear area and in close vicinity to the centrosomes. This organization poses a challenge for cell division when the single Golgi ribbon needs to be partitioned into the two daughter cells. To ensure faithful inheritance in the progeny, the Golgi ribbon is divided in three consecutive steps in mitosis, namely disassembly, partitioning and reassembly. However, the structure of the Golgi ribbon is only present in higher animals and Golgi disassembly during mitosis is not ubiquitous in all organisms. Therefore, there must be unique reasons to build up the Golgi in this particular conformation and to preserve it over generations. In this review, we first highlight the diversity of the Golgi architecture in different organisms and revisit the concept of the Golgi ribbon. Following on, we discuss why the ribbon is needed and how it forms in vertebrate cells. Lastly, we conclude with likely purposes of mitotic ribbon disassembly and further propose mechanisms by which it regulates mitosis.


Asunto(s)
Aparato de Golgi/química , Aparato de Golgi/fisiología , Animales , Humanos , Interfase , Mitosis
4.
EMBO J ; 27(7): 948-55, 2008 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-18323777

RESUMEN

Sterol regulatory element-binding proteins (SREBPs) are membrane-bound transcription factors that reside as inactive precursors in the endoplasmic reticulum (ER) membrane. After sterol depletion, the proteins are transported to the Golgi apparatus, where they are cleaved by site-1 protease (S1P). Cleavage releases the active transcription factors, which then enter the nucleus to induce genes that regulate cellular levels of cholesterol and phospholipids. This regulation depends on the spatial separation of the Golgi and the ER, as mixing of the compartments induces unregulated activation of SREBPs. Here, we show that S1P is localized to the Golgi, but cycles continuously through the ER and becomes trapped when ER exit is inhibited. During mitosis, S1P is associated with mitotic Golgi clusters, which remain distinct from the ER. In mitotic cells, S1P is active, but SREBP is not cleaved as S1P and SREBP reside in different compartments. Together, these results indicate that the spatial separation of the Golgi and the ER is maintained during mitosis, which is essential to protect the S1P substrate SREBP from unregulated activation during mitosis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Mitosis , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Activación Enzimática , Aparato de Golgi/enzimología , Humanos , Proproteína Convertasas/metabolismo , Transporte de Proteínas , Ratas , Serina Endopeptidasas/metabolismo , Especificidad por Sustrato
5.
Semin Cell Dev Biol ; 20(7): 810-6, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19508856

RESUMEN

Successful cell reproduction requires faithful duplication and proper segregation of cellular contents, including not only the genome but also intracellular organelles. Since the Golgi apparatus is an essential organelle of the secretory pathway, its accurate inheritance is therefore of importance to sustain cellular function. Regulation of Golgi division and its coordination with cell cycle progression involves a series of sequential events that are subjected to a precise spatiotemporal control. Here, we summarize the current knowledge about the underlying mechanisms, the molecular players and the biological relevance of this process, particularly in mammalian cells, and discuss the unsolved problems and future perspectives opened by the recent studies.


Asunto(s)
Aparato de Golgi , Mitosis , Animales , Retículo Endoplásmico , Humanos , Mamíferos , Huso Acromático
6.
EMBO Rep ; 10(10): 1154-60, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19745842

RESUMEN

Vesicular stomatitis virus (VSV) infects and kills a wide range of cell types; however, the mechanisms involved in VSV-mediated cell death are not fully understood. Here we show that VSV infection interferes with mitotic progression, resulting in cell death. This effect requires the interaction of VSV matrix (M) protein with the Rae1-Nup98 complex in mitosis, which is associated with a subset of ribonucleoproteins (RNPs). VSV displaced Rae1 from spindle poles, caused spindle abnormalities and triggered substantial cell death during metaphase. These effects were attenuated in cells infected with VSV expressing a mutant M protein that does not bind efficiently to the Rae1-Nup98-RNP complex. In cells that progressed to late mitosis, M protein prevented proper nuclear formation and chromatin decondensation. VSV is an oncolytic (anti-tumour) agent as it preferentially replicates and kills tumour cells. As tumour cells have a high mitotic index, VSV-mediated mitotic cell death probably contributes to its oncolytic activity.


Asunto(s)
Muerte Celular , Mitosis , Vesiculovirus/fisiología , Animales , Línea Celular , Núcleo Celular/metabolismo , Humanos , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Oocitos/metabolismo , Unión Proteica , Ratas , Ribonucleoproteínas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Xenopus
7.
Nat Commun ; 9(1): 3583, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181605

RESUMEN

Enhanced telomere maintenance is evident in malignant cancers. While telomeres are thought to be inherently heterochromatic, detailed mechanisms of how epigenetic modifications impact telomere protection and structures are largely unknown in human cancers. Here we develop a molecular tethering approach to experimentally enrich heterochromatin protein HP1α specifically at telomeres. This results in increased deposition of H3K9me3 at cancer cell telomeres. Telomere extension by telomerase is attenuated, and damage-induced foci at telomeres are reduced, indicating augmentation of telomere stability. Super-resolution STORM imaging shows an unexpected increase in irregularity of telomeric structure. Telomere-tethered chromo shadow domain (CSD) mutant I165A of HP1α abrogates both the inhibition of telomere extension and the irregularity of telomeric structure, suggesting the involvement of at least one HP1α-ligand in mediating these effects. This work presents an approach to specifically manipulate the epigenetic status locally at telomeres to uncover insights into molecular mechanisms underlying telomere structural dynamics.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Telómero/metabolismo , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Daño del ADN , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Microscopía/métodos , Mutación , Dominios Proteicos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Telómero/genética , Telómero/ultraestructura , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
8.
Curr Opin Cell Biol ; 47: 43-51, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28390244

RESUMEN

The Golgi apparatus is tightly integrated into the cellular system where it plays essential roles required for a variety of cellular processes. Its vital functions include not only processing and sorting of proteins and lipids, but also serving as a signaling hub and a microtubule-organizing center. Golgi stacks in mammalian cells are interconnected into a compact ribbon in the perinuclear region. However, the ribbon can undergo distinct disassembly processes that reflect the cellular state or environmental demands and stress. For instance, its most dramatic change takes place in mitosis when the ribbon is efficiently disassembled into vesicles through a combination of ribbon unlinking, cisternal unstacking and vesiculation. Furthermore, the ribbon can also be detached and positioned at specific cellular locations to gain additional functionalities during differentiation, or fragmented to different degrees along disease progression or upon cell death. Here, we describe the major morphological alterations of Golgi ribbon disassembly under physiological and pathological conditions and discuss the underlying mechanisms that drive these changes.


Asunto(s)
Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Mitosis , Animales , Diferenciación Celular , Progresión de la Enfermedad , Aparato de Golgi/patología , Humanos , Especificidad de Órganos , Transporte de Proteínas , Transducción de Señal
9.
Curr Opin Cell Biol ; 24(4): 467-74, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22726585

RESUMEN

The Golgi apparatus is essential for post-translational modifications and sorting of proteins in the secretory pathway. In addition, it further performs a broad range of specialized functions. This functional diversity is achieved by combining basic morphological modules of cisternae into higher ordered structures. Linking cisternae into stacks that are further connected through tubules into a continuous Golgi ribbon greatly increases its efficiency and expands its repertoire of functions. During cell division, the different modules of the Golgi are inherited by different mechanisms to maintain its functional and morphological composition.


Asunto(s)
Aparato de Golgi/química , Aparato de Golgi/metabolismo , Animales , Mamíferos
10.
Mol Cancer Ther ; 9(12): 3375-85, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21139045

RESUMEN

Agents that interfere with mitotic progression by perturbing microtubule dynamics are commonly used for cancer chemotherapy. Here, we identify nakiterpiosin as a novel antimitotic drug that targets microtubules. Nakiterpiosin induces mitotic arrest and triggers mitotic catastrophe in human cancer cells by impairing bipolar spindle assembly. At higher concentration, it alters the interphase microtubule network and suppresses microtubule dynamics. In the presence of nakiterpiosin, microtubules are no longer arranged in a centrosomal array and centrosome-mediated microtubule regrowth after cold depolymerization is inhibited. However, centrosome organization, the ultrastructure of Golgi stacks, and protein secretion are not affected, suggesting that the drug has minimal toxicity toward other cellular functions. Nakiterpiosin interacts directly with tubulin, inhibits microtubule polymerization in vitro, and decreases polymer mass in cells. Furthermore, it enhances tubulin acetylation and reduces viability of paclitaxel-resistant cancer cells. In conclusion, nakiterpiosin exerts antiproliferative activity by perturbing microtubule dynamics during mitosis that activates the spindle assembly checkpoint and triggers cell death. These findings suggest the potential use of nakiterpiosin as a chemotherapeutic agent.


Asunto(s)
Homoesteroides/farmacología , Mitosis/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Centrosoma/ultraestructura , Cromosomas Humanos/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Homoesteroides/química , Humanos , Interfase/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Nocodazol/química , Nocodazol/farmacología , Paclitaxel/química , Paclitaxel/farmacología , Polimerizacion/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
11.
J Cell Biol ; 184(3): 391-7, 2009 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-19188490

RESUMEN

The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.


Asunto(s)
Aparato de Golgi , Mitosis/fisiología , Huso Acromático/metabolismo , Animales , Transporte Biológico/fisiología , Biomarcadores/metabolismo , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Cinesinas/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Pirimidinas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tionas/metabolismo
12.
Commun Integr Biol ; 2(1): 35-6, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19704864

RESUMEN

Emerging evidence suggests that the Golgi functions as a regulatory node for various signaling cascades. Modules of the MAPK pathway are targeted to the Golgi upon stimulation of cells with mitogens. The target for activated ERK on the Golgi membranes is GRASP65, a peripheral membrane protein required for Golgi cisternal stacking. Phosphorylation of GRASP65 at Serine 277 results in a loss of its oligomerization and causes unstacking of Golgi cisternae. This reorganization of the Golgi structure is required for the polarization of the Golgi and the centrosomes towards the leading edge in migrating cells. Preventing GRASP65 phosphorylation with mutants lacking the phosphorylation site blocks Golgi and centrosome orientation. This demonstrates a mechanism for cell polarization involving dynamic remodeling of the Golgi mediated by local phosphorylation of a Golgi protein induced by mitogen signaling.

13.
Nat Protoc ; 4(11): 1653-62, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19876022

RESUMEN

This protocol describes an assay for the induction of asymmetrical cell division where the entire spindle is segregated into only one of the daughter cells. The procedure consists of four stages: (i) generation of asymmetrical monoasters by arresting cells in early mitosis with a kinesin Eg5 inhibitor; (ii) induction of cell division by microinjection of recombinant Mad1 protein or by the addition of a Cdk1 inhibitor; (iii) monitoring the division process by phase-contrast time-lapse microscopy; and (iv) processing for correlative immunofluorescence or correlative electron microscopy. This approach can be applied to determine the requirement for the mitotic spindle in organelle partitioning as well as to investigate the role of the monopolar spindle in cytokinesis. Moreover, the generated nucleus-lacking cytoplast provides an ideal environment to test the feasibility and activity of biological processes in the absence of genomic influence. The protocol takes 2-4 d to complete.


Asunto(s)
Técnicas de Cultivo de Célula , División Celular , Huso Acromático/ultraestructura , Complejo 1 de Proteína Adaptadora/fisiología , Complejo 1 de Proteína Adaptadora/ultraestructura , Animales , Línea Celular , Cinesinas/antagonistas & inhibidores , Microscopía de Contraste de Fase , Potoroidae , Huso Acromático/fisiología
14.
Commun Integr Biol ; 2(5): 406-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19907701

RESUMEN

During mitosis, the Golgi apparatus needs to be divided into the daughter cells. To achieve successful division, the single continuous Golgi ribbon is disassembled in early mitosis into vesicular and tubular membranes, which upon segregation fuse to reform a functional Golgi complex in telophase. Although the process of Golgi division has been well described, the underlying mechanisms remain largely unknown. The observation that Golgi membranes accumulate around the spindle poles implies a role of the mitotic spindle in Golgi partitioning. By inducing asymmetrical cell division where the spindle goes into only one of the daughter cells, we have recently shown that the inheritance of a continuous Golgi ribbon critically relies on the mitotic spindle, while membranes sufficient to reassemble polarized, functional Golgi stacks are inherited independently.

15.
PLoS One ; 3(2): e1647, 2008 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-18297130

RESUMEN

The Golgi apparatus in mammalian cells is composed of flattened cisternae that are densely packed to form stacks. We have used the Golgi stacking protein GRASP65 as a tool to modify the stacking state of Golgi cisternae. We established an assay to measure protein transport to the cell surface in post-mitotic cells in which the Golgi was unstacked. Cells with an unstacked Golgi showed a higher transport rate compared to cells with stacked Golgi membranes. Vesicle budding from unstacked cisternae in vitro was significantly increased compared to stacked membranes. These results suggest that Golgi cisternal stacking can directly regulate vesicle formation and thus the rate of protein transport through the Golgi. The results further suggest that at the onset of mitosis, unstacking of cisternae allows extensive and rapid vesiculation of the Golgi in preparation for its subsequent partitioning.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Aparato de Golgi/ultraestructura , Transporte de Proteínas , Proteína Coat de Complejo I , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Humanos , Proteínas de la Membrana , Mitosis
16.
J Cell Biol ; 182(5): 837-43, 2008 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-18762583

RESUMEN

Directed cell migration requires the orientation of the Golgi and centrosome toward the leading edge. We show that stimulation of interphase cells with the mitogens epidermal growth factor or lysophosphatidic acid activates the extracellular signal-regulated kinase (ERK), which phosphorylates the Golgi structural protein GRASP65 at serine 277. Expression of a GRASP65 Ser277 to alanine mutant or a GRASP65 1-201 truncation mutant, neither of which can be phosphorylated by ERK, prevents Golgi orientation to the leading edge in a wound assay. We show that phosphorylation of GRASP65 with recombinant ERK leads to the loss of GRASP65 oligomerization and causes Golgi cisternal unstacking. Furthermore, preventing Golgi polarization by expressing mutated GRASP65 inhibits centrosome orientation, which is rescued upon disassembly of the Golgi structure by brefeldin A. We conclude that Golgi remodeling, mediated by phosphorylation of GRASP65 by ERK, is critical for the establishment of cell polarity in migrating cells.


Asunto(s)
Polaridad Celular , Centrosoma/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Brefeldino A/farmacología , Movimiento Celular/fisiología , Activación Enzimática/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Aparato de Golgi/efectos de los fármacos , Proteínas de la Matriz de Golgi , Interfase , Lisofosfolípidos/farmacología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mitógenos/fisiología , Fosforilación , Estructura Terciaria de Proteína , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas
17.
Dev Cell ; 15(5): 657-67, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19000832

RESUMEN

The Nup107-160 complex, the largest subunit of the nuclear pore, is multifunctional. It mediates mRNA export in interphase, and has roles in kinetochore function, spindle assembly, and postmitotic nuclear pore assembly. We report here that the levels of constituents of the Nup107-160 complex are coordinately cell cycle-regulated. At mitosis, however, a member of the complex, Nup96, is preferentially downregulated. This occurs via the ubiquitin-proteasome pathway. When the levels of Nup96 are kept high, a significant delay in G1/S progression occurs. Conversely, in cells of Nup96(+/-) mice, which express low levels of Nup96, cell cycle progression is accelerated. These lowered levels of Nup96 yield specific defects in nuclear export of certain mRNAs and protein expression, among which are key cell cycle regulators. Thus, Nup96 levels regulate differential gene expression in a phase-specific manner, setting the stage for proper cell cycle progression.


Asunto(s)
Ciclo Celular , Regulación hacia Abajo , Proteínas de Complejo Poro Nuclear/metabolismo , Animales , Línea Celular , Expresión Génica , Células HeLa , Humanos , Ratones , Mitosis , Poro Nuclear/metabolismo , ARN Mensajero/metabolismo
18.
J Biol Chem ; 280(9): 7748-57, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15618221

RESUMEN

CHK2/hCds1 plays important roles in the DNA damage-induced cell cycle checkpoint by phosphorylating several important targets, such as Cdc25 and p53. To obtain a better understanding of the CHK2 signaling pathway, we have carried out a yeast two-hybrid screen to search for potential CHK2-interacting proteins. Here, we report the identification of the mitotic checkpoint kinase, TTK/hMps1, as a novel CHK2-interacting protein. TTK/hMps1 directly phosphorylates CHK2 on Thr-68 in vitro. Expression of a TTK kinase-dead mutant, TTK(D647A), interferes with the G(2)/M arrest induced by either ionizing radiation or UV light. Interestingly, induction of CHK2 Thr-68 phosphorylation and of several downstream events, such as cyclin B1 accumulation and Cdc2 Tyr-15 phosphorylation, is also affected. Furthermore, ablation of TTK expression using small interfering RNA results not only in reduced CHK2 Thr-68 phosphorylation, but also in impaired growth arrest. Our results are consistent with a model in which TTK functions upstream from CHK2 in response to DNA damage and suggest possible cross-talk between the spindle assembly checkpoint and the DNA damage checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Daño del ADN , Proteínas Quinasas/metabolismo , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/fisiología , Treonina/química , Western Blotting , Ciclo Celular , División Celular , Línea Celular , Línea Celular Tumoral , Quinasa de Punto de Control 2 , Ciclina B/metabolismo , Ciclina B1 , Escherichia coli/metabolismo , Fase G2 , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Modelos Biológicos , Mutación , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas , ARN Interferente Pequeño/metabolismo , Radiación Ionizante , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Transfección , Proteína p53 Supresora de Tumor/metabolismo , Técnicas del Sistema de Dos Híbridos , Tirosina/química , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA