Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 23(1): 135, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428172

RESUMEN

BACKGROUND: Long non-coding RNA (LncRNA) plays important roles in physiological and pathological processes. Identifying LncRNA-protein interactions (LPIs) is essential to understand the molecular mechanism and infer the functions of lncRNAs. With the overwhelming size of the biomedical literature, extracting LPIs directly from the biomedical literature is essential, promising and challenging. However, there is no webserver of LPIs relationship extraction from literature. RESULTS: LPInsider is developed as the first webserver for extracting LPIs from biomedical literature texts based on multiple text features (semantic word vectors, syntactic structure vectors, distance vectors, and part of speech vectors) and logistic regression. LPInsider allows researchers to extract LPIs by uploading PMID, PMCID, PMID List, or biomedical text. A manually filtered and highly reliable LPI corpus is integrated in LPInsider. The performance of LPInsider is optimal by comprehensive experiment on different combinations of different feature and machine learning models. CONCLUSIONS: LPInsider is an efficient analytical tool for LPIs that helps researchers to enhance their comprehension of lncRNAs from text mining, and also saving their time. In addition, LPInsider is freely accessible from http://www.csbg-jlu.info/LPInsider/ with no login requirement. The source code and LPIs corpus can be downloaded from https://github.com/qiufengdiewu/LPInsider .


Asunto(s)
ARN Largo no Codificante , Biología Computacional , Minería de Datos , Aprendizaje Automático , ARN Largo no Codificante/genética , Programas Informáticos
3.
Front Genet ; 12: 630379, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828582

RESUMEN

Moonlighting proteins (MPs) are a special type of protein with multiple independent functions. MPs play vital roles in cellular regulation, diseases, and biological pathways. At present, very few MPs have been discovered by biological experiments. Due to the lack of data sample, computation-based methods to identify MPs are limited. Currently, there is no de-novo prediction method for MPs. Therefore, systematic research and identification of MPs are urgently required. In this paper, we propose a multimodal deep ensemble learning architecture, named MEL-MP, which is the first de novo computation model for predicting MPs. First, we extract four sequence-based features: primary protein sequence information, evolutionary information, physical and chemical properties, and secondary protein structure information. Second, we select specific classifiers for each kind of feature. Finally, we apply the stacked ensemble to integrate the output of each classifier. Through comprehensive model selection and cross-validation experiments, it is shown that specific classifiers for specific feature types can achieve superior performance. For validating the effectiveness of the fusion-based stacked ensemble, different feature fusion strategies including direct combination and a multimodal deep auto-encoder are used for comparative purposes. MEL-MP is shown to exhibit superior prediction performance (F-score = 0.891), surpassing the existing machine learning model, MPFit (F-score = 0.784). In addition, MEL-MP is leveraged to predict the potential MPs among all human proteins. Furthermore, the distribution of predicted MPs on different chromosomes, the evolution of MPs, the association of MPs with diseases, and the functional enrichment of MPs are also explored. Finally, for maximum convenience, a user-friendly web server is available at: http://ml.csbg-jlu.site/mel-mp/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA