Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 336, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120751

RESUMEN

Preeclampsia (PE) is a life-threatening pregnancy-specific complication with controversial mechanisms and no effective treatment except delivery is available. Currently, increasing researchers suggested that PE shares pathophysiologic features with protein misfolding/aggregation disorders, such as Alzheimer disease (AD). Evidences have proposed defective autophagy as a potential source of protein aggregation in PE. Endoplasmic reticulum-selective autophagy (ER-phagy) plays a critical role in clearing misfolded proteins and maintaining ER homeostasis. However, its roles in the molecular pathology of PE remain unclear. We found that lncRNA DUXAP8 was upregulated in preeclamptic placentae and significantly correlated with clinical indicators. DUXAP8 specifically binds to PCBP2 and inhibits its ubiquitination-mediated degradation, and decreased levels of PCBP2 reversed the activation effect of DUXAP8 overexpression on AKT/mTOR signaling pathway. Function experiments showed that DUXAP8 overexpression inhibited trophoblastic proliferation, migration, and invasion of HTR-8/SVneo and JAR cells. Moreover, pathological accumulation of swollen and lytic ER (endoplasmic reticulum) was observed in DUXAP8-overexpressed HTR8/SVneo cells and PE placental villus trophoblast cells, which suggesting that ER clearance ability is impaired. Further studies found that DUXAP8 overexpression impaired ER-phagy and caused protein aggregation medicated by reduced FAM134B and LC3II expression (key proteins involved in ER-phagy) via activating AKT/mTOR signaling pathway. The increased level of FAM134B significantly reversed the inhibitory effect of DUXAP8 overexpression on the proliferation, migration, and invasion of trophoblasts. In vivo, DUXAP8 overexpression through tail vein injection of adenovirus induced PE-like phenotypes in pregnant rats accompanied with activated AKT/mTOR signaling, decreased expression of FAM134B and LC3-II proteins and increased protein aggregation in placental tissues. Our study reveals the important role of lncRNA DUXAP8 in regulating trophoblast biological behaviors through FAM134B-mediated ER-phagy, providing a new theoretical basis for understanding the pathogenesis of PE.


Asunto(s)
Autofagia , Retículo Endoplásmico , Preeclampsia , Proteínas Proto-Oncogénicas c-akt , ARN Largo no Codificante , Transducción de Señal , Serina-Treonina Quinasas TOR , Trofoblastos , Adulto , Animales , Femenino , Humanos , Embarazo , Ratas , Autofagia/genética , Línea Celular , Movimiento Celular/genética , Proliferación Celular/genética , Retículo Endoplásmico/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Preeclampsia/genética , Preeclampsia/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Serina-Treonina Quinasas TOR/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patología , Masculino
2.
BMC Genomics ; 25(1): 229, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429670

RESUMEN

BACKGROUND: Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT: By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION: In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.


Asunto(s)
MicroARNs , Plantones , Plantones/genética , Plantones/metabolismo , Medicago sativa/genética , Óxido Nítrico/metabolismo , Sequías , MicroARNs/genética , MicroARNs/metabolismo , Hormonas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
3.
BMC Genomics ; 25(1): 316, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549050

RESUMEN

BACKGROUND: Alfalfa is a perennial forage crop of high importance, but its cultivation is often affected by drought stress. Currently, the investigation of drought-related small RNAs is a popular research topic to uncover plant drought resistance mechanisms. Among these small RNAs, microRNA166 (miR166) is associated with drought in numerous plant species. Initial small RNA sequencing studies have shown that miR166 is highly responsive to exogenous nitric oxide (NO) and drought. Therefore, analyzing the expression of Msa-miR166 under nitric oxide and drought treatment is significant. RESULT: Bioinformatics analysis revealed that the miR166 family is widely distributed among plants, ranging from mosses to eudicots, with significant distribution differences between species. The evolutionary degree of Msa-miR166s is highly similar to that of Barrel medic (Medicago truncatula) and Soybean (Glycine max), but significantly different from the model plant Arabidopsis (Arabidopsis thaliana). It is suggested that there are no significant differences in miR166s within the species, and members of Msa-miR166s can form a typical stem-loop. The lowest level of exogenous nitric oxide was observed in Msa-miR166s under drought stress, followed by individual drought, and the highest level was observed after removing endogenous nitric oxide. CONCLUSION: In response to short-term drought, Msa-miR166s down-regulate expression in alfalfa (Medicago sativa L.). Exogenous nitric oxide can reduce the expression of Msa-miR166s in response to short-term drought. These findings suggest that Msa-miR166e-5p is responsive to environmental changes. The expression levels of target genes showed an opposite trend to Msa-miR166s, verifying the accuracy of Degradome sequencing in the early stage. This suggests that alfalfa experiences drought stress when regulated by exogenous nitric oxide, targeting HD ZIP-III, FRI, and CoA ligase genes. Additionally, the expression of Msa-miR166s in response to drought stress varies between leaves and roots, indicating spatiotemporal specificity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Medicago sativa/genética , Proteínas de Plantas/genética , Óxido Nítrico/metabolismo , Sequías , Secuencia de Bases , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Proteínas de Arabidopsis/genética , MicroARNs/genética , MicroARNs/metabolismo
4.
FASEB J ; 37(2): e22751, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36692426

RESUMEN

Increasing evidence suggests that RNA m5C modification and its regulators have been confirmed to be associated with the pathogenesis of many diseases. However, the distribution and biological functions of m5C in mRNAs of placental tissues remain unknown. we collected placentae from normotensive pregnancies (CTR) and preeclampsia patients (PE) to analyze the transcriptomic profiling of m5C RNA methylation through m5C RNA immunoprecipitation (UMI-MeRIP-Seq). we discovered that overall m5C methylation peaks were decreased in placental tissues from PE patients. And, 2844 aberrant m5C peaks were identified, of which respectively 1304 m5C peaks were upregulated and 1540 peaks were downregulated. The distribution of m5C peaks were mainly located in CDS (coding sequences) regions in placental tissues of both groups, but compared with the CTR group, the m5C peak in PE group before the stop code of CDS was significantly increased and even higher than the peak value after start code in CDS. Differentially methylated genes were mainly enriched in MAPK/cAMP signaling pathway. Moreover, the up-regulated genes with hypermethylated modification were enriched in the processes of hypoxia, inflammation/immune response. Finally, through analyzing the mRNA expression levels of m5C RNA methylation regulators, we found only DNMT3B and TET3 were significantly upregulated in PE samples than in control group. And they are not only negatively correlated with each other, but also closely related to those differentially expressed genes modified by differential methylation.Our findings provide new insights regarding alterations of m5C RNA modification into the pathogenic mechanisms of PE.


Asunto(s)
Placenta , Preeclampsia , Humanos , Femenino , Embarazo , Placenta/metabolismo , Preeclampsia/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , ARN/metabolismo
5.
J Org Chem ; 89(12): 8531-8536, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38838346

RESUMEN

An effective multicomponent reaction for the synthesis of 4-phosphorylated 4H-chromenes via a tandem phosphorylation/alkylation/cyclization/dehydration sequence with water as the only byproduct was developed. Extensive mechanistic investigations involving in situ NMR experiments, time control experiments, and in situ HRMS experiment allowed us to elucidate the order of each subreaction to arrive at a complete understanding of the underlying mechanism of this multicomponent reaction. Mechanistic data confirm that the reaction begins with a phospha-aldol-elimination, followed by addition of a ketone enolate, intermolecular alkylation, intramolecular cyclization, and dehydration under acidic conditions.

6.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3132-3143, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-39041073

RESUMEN

The traditional Chinese medicine(TCM) single preparation refers to the innovative TCM made from the whole or the effective part(including the effective ingredient) extract of a TCM single herb by modern technology. They have a long history of applications, definite effects and few side effects. It is an indispensable part of the research of innovative TCM. In recent years, with the optimization of national policies, the development of TCM single preparation shows a positive trend. However, because of the imbalance in the composition ratio, the need for expansion of indications, the need for further basic research, and the low conversion rate of existing patent achievements in universities and institutes, the TCM single preparation still has significant development space. In this review, we analyze and study the current situation, characteristics and difficulties of TCM single preparation, as well as relevant clinical application, basic research, industrialization and patent application information through statistical analysis of TCM single preparations in the Chinese Pharmacopoeia, which helps to provide direction for the development and research of single preparation of TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/química , Humanos
7.
BMC Plant Biol ; 23(1): 503, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37858063

RESUMEN

BACKGROUND: Quinoa is an important economic crop, drought is one of the key factors affecting quinoa yield. Clarifying the adaptation strategy of quinoa to drought is conducive to cultivating drought-tolerant varieties. At present, the study of quinoa on drought stress-related metabolism and the identification of related metabolites are still unknown. As a direct feature of biochemical functions, metabolites can reveal the biochemical pathways involved in drought response. RESULT: Here, we studied the physiological and metabolic responses of drought-tolerant genotype L1 and sensitive genotype HZ1. Under drought conditions, L1 had higher osmotic adjustment ability and stronger root activity than HZ1, and the relative water content of L1 was also higher than that of HZ1. In addition, the barrier-to- sea ratio of L1 is significantly higher than that of HZ1. Using untargeted metabolic analysis, a total of 523, 406, 301 and 272 differential metabolites were identified in L1 and HZ1 on day 3 and day 9 of drought stress. The key metabolites (amino acids, nucleotides, peptides, organic acids, lipids and carbohydrates) accumulated differently in quinoa leaves. and HZ1 had the most DEMs in Glycerophospholipid metabolism (ko00564) and ABC transporters (ko02010) pathways. CONCLUSION: These results provide a reference for characterizing the response mechanism of quinoa to drought and improving the drought tolerance of quinoa.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Sequías , Metabolómica/métodos , Genotipo , Agua/metabolismo
8.
Arch Biochem Biophys ; 741: 109596, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030589

RESUMEN

OBJECTIVE: Preeclampsia (PE) is a maternal multisystem disease with an unclear mechanism. Data showed that MiR-95-3p promoted cell migration, invasion and proliferation, leading to the occurrence and development of many cancers, and placental trophoblasts and tumor cells had similar migration, invasion and proliferation abilities. Meanwhile we found that MiR-95-3p was differentially expressed in PE and normal placenta. Therefore, this article aimed to explore the biological function and mechanism of miR-95-3p in PE. METHODS: The expression of miR-95-3p in PE and normal placental tissue was explored by high-throughput sequencing and qRT-PCR. The effects of miR-95-3p on trophoblast migration, invasion, proliferation, angiogenesis and apoptosis were investigated by Transwell migration and invasion assays, cell viability assay, tube formation assay and flow cytometry in two trophoblast cell lines (HTR-8/SVneo and JAR). The miR-95-3p target gene EPM2A was identified and verified by unique identifier mRNA next-generation sequencing and dual-luciferase reporter gene experiments. Rescue experiments were conducted to investigate whether miR-95-3p regulated EPM2A to participate in trophoblast migration and invasion. Finally, the effects of miR-95-3p and EPM2A on the expression of angiogenic factors and inflammation-related factors were investigated by ELISA. RESULTS: We found that miR-95-3p was expressed at low levels in the placental tissue of patients with PE and was negatively correlated with EPM2A expression. In vitro upregulation of miR-95-3p and downregulation of EPM2A promote trophoblast migration, invasion and proliferation. Furthermore, EPM2A was confirmed as a target mRNA of miR-95-3p. Upregulation of EPM2A mitigated miR-95-3p-mediated promotion of trophoblast migration and invasion and vice versa. Finally, both miR-95-3p and EPM2A regulate the expression of trophoblast angiogenesis-related factors and inflammation-related factors. CONCLUSION: Our findings demonstrated that miR-95-3p promoted the migration and invasion of trophoblast cells by targeting EPM2A to inhibit the occurrence and development of PE.


Asunto(s)
MicroARNs , Preeclampsia , Trofoblastos , Femenino , Humanos , Embarazo , Movimiento Celular/genética , Proliferación Celular/genética , Metaloproteinasa 2 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras , ARN Mensajero/metabolismo , Trofoblastos/metabolismo
9.
J Org Chem ; 88(23): 16216-16228, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967376

RESUMEN

An effective and economical acid-promoted three-component reaction for the construction of C-P and C-C bonds for the synthesis of γ-ketophosphine oxides with water as the only byproduct was developed. Detailed mechanistic experiments confirmed that the reaction proceeds by phospha-aldol elimination, in which a benzylic carbocation is generated from the phosphorylation of aldehydes, which then reacts with ketone enolates under acidic conditions.

10.
Bioorg Chem ; 133: 106407, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36758275

RESUMEN

(±)-Yanhusuomide A (1), a novel enantiomeric pair of ornithine-fused benzylisoquinoline, were characterized from the dried tubers of Corydalis yanhusuo, along with a biogenetically related intermediate oblongine (2). Yanhusuomide A features an unprecedented skeleton based on a benzylisoquinoline coupled with an ornithine derivative to form a rare 5,6-dihydro-4H-pyrido[3,4,5-de]quinazoline motif. Plausible biosynthetic pathway of 1 was proposed, and (±)-yanhusuomide A (1) presented potential inhibitory bioactivity against acetylcholinesterase (AChE) with IC50 = 14.07 ± 2.38 µM. The simulation of molecular docking displayed that 1 generated strong interaction with Asp-74 and Trp-86 residues of AChE through attractive charge of the quaternary nitrogen.


Asunto(s)
Bencilisoquinolinas , Corydalis , Acetilcolinesterasa , Bencilisoquinolinas/química , Corydalis/química , Simulación del Acoplamiento Molecular , Tubérculos de la Planta/química
11.
Heart Surg Forum ; 26(1): E020-E026, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36856501

RESUMEN

OBJECTIVES: Cardiopulmonary bypass (CPB) induces inflammatory homeostasis dysregulation, closely related to many postoperative adverse effects. Minimizing the systemic inflammatory response to CPB is imperative to improving cardiac surgery safety. This study aimed to retrospectively evaluate the efficacy of the hemoperfusion cartridge, a device recently designed for extracorporeal blood purification to remove cytokines from the blood for patients undergoing cardiac valve replacement surgery using CPB. METHODS: The hemoperfusion (HP) group consisted of 138 patients, who underwent a hemoperfusion cartridge procedure during CPB. The control group included 149 patients, who received standard CPB management. The evaluated indices included inflammatory cytokines, blood biochemical indices, and postoperative outcome indices. RESULTS: Patients in the HP group had relatively lower interleukin (IL)-6 levels (days one and two post-CPB) and IL-8 (day one post-CPB) compared with the control group. Some relatively decreased biochemical blood indices also were observed in the HP group, including a significantly lower lactic acid level (days one, two, and three post-CPB), platelet counts (days one, two, and three post-CPB), and aspartate aminotransferase (days one and three post-CPB). Regarding the postoperative outcomes, no severe complications occurred in the patients; however, the HP group required less ventilation time than the control group. CONCLUSIONS: The hemoperfusion cartridge seems promising in limiting the inflammatory reactions during CPB, with noteworthy potential for application in cardiac surgery.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Hemoperfusión , Humanos , Puente Cardiopulmonar , Estudios Retrospectivos , Citocinas , Interleucina-6 , Válvulas Cardíacas
12.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003311

RESUMEN

Brassinosteroids (BRs), the sixth major phytohormone, can regulate plant salt tolerance. Many studies have been conducted to investigate the effects of BRs on plant salt tolerance, generating a large amount of research data. However, a meta-analysis on regulating plant salt tolerance by BRs has not been reported. Therefore, this study conducted a meta-analysis of 132 studies to elucidate the most critical physiological mechanisms by which BRs regulate salt tolerance in plants from a higher dimension and analyze the best ways to apply BRs. The results showed that exogenous BRs significantly increased germination, plant height, root length, and biomass (total dry weight was the largest) of plants under salt stress. There was no significant difference between seed soaking and foliar spraying. However, the medium method (germination stage) and stem application (seedling stage) may be more effective in improving plant salt tolerance. BRs only inhibit germination in Solanaceae. BRs (2 µM), seed soaking for 12 h, and simultaneous treatment with salt stress had the highest germination rate. At the seedling stage, the activity of Brassinolide (C28H48O6) was higher than that of Homobrassinolide (C29H50O6), and post-treatment, BRs (0.02 µM) was the best solution. BRs are unsuitable for use in the germination stage when Sodium chloride is below 100 mM, and the effect is also weakest in the seedling stage. Exogenous BRs promoted photosynthesis, and antioxidant enzyme activity increased the accumulation of osmoregulatory and antioxidant substances and reduced the content of harmful substances and Na+, thus reducing cell damage and improving plant salt tolerance. BRs induced the most soluble protein, chlorophyll a, stomatal conductance, net photosynthetic rate, Glutathione peroxidase, and root-Ca2+, with BRs causing Ca2+ signals in roots probably constituting the most important reason for improving salt tolerance. BRs first promoted the accumulation of Ca2+ in roots, which increased the content of the above vital substances and enzyme activities through the Ca2+ signaling pathway, improving plant salt tolerance.


Asunto(s)
Antioxidantes , Brasinoesteroides , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Tolerancia a la Sal , Clorofila A/metabolismo , Plantones/metabolismo , Raíces de Plantas
13.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6324-6333, 2023 Dec.
Artículo en Zh | MEDLINE | ID: mdl-38211989

RESUMEN

Chronic heart failure(CHF) is a comprehensive clinical syndrome caused by multiple factors that result in structural and/or functional abnormalities of the heart, leading to impaired ventricular contraction and/or relaxation functions. This medical condition represents the final stage of various cardiovascular diseases. In the treatment of CHF, multiple clinical studies have demonstrated the benefits of using traditional Chinese medicine(TCM) to control oxidative stress, inflammation, and apoptosis, thereby delaying ventricular remodeling and reducing myocardial fibrosis. In this study, common TCM syndromes in the diagnosis and treatment of CHF in recent years were reviewed and summarized. Five common treatment methods including benefiting Qi and activating blood circulation, enhancing Qi and nourishing Yin, warming Yang for diuresis, eliminating phlegm and dampness, rescuing from collapse by restoring Yang, and corresponding classic prescriptions in prevention and treatment of CHF were concluded under the guidance of TCM syndrome differentiation thinking. Meanwhile, research progress on the modern pharmacological effects of these classic prescriptions was systematically discussed, so as to establish a unique treatment system for CHF by classic prescriptions under the guidance of TCM syndrome differentiation theory and provide innovative diagnosis and treatment strategies for clinical CHF.


Asunto(s)
Insuficiencia Cardíaca , Medicina Tradicional China , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Enfermedad Crónica , Síndrome
14.
Zhongguo Zhong Yao Za Zhi ; 48(3): 614-624, 2023 Feb.
Artículo en Zh | MEDLINE | ID: mdl-36872224

RESUMEN

Chronic heart failure(CHF) is a series of clinical syndromes in which various heart diseases progress to their end stage. Its morbidity and mortality are increasing year by year, which seriously threatens people's life and health. The diseases causing CHF are complex and varied, such as coronary heart disease, hypertension, diabetes, cardiomyopathy and so on. It is of great significance to establish animal models of CHF according to different etiologies to explore the pathogenesis of CHF and develop drugs to prevent and treat CHF induced by different diseases. Therefore, based on the classification of the etiology of CHF, this paper summarizes the animal models of CHF widely used in recent 10 years, and the application of these animal models in traditional Chinese medicine(TCM) research, in order to provide ideas and strategies for studying the pathogenesis and treatment of CHF, and provide ideas for TCM modernization research.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Animales , Medicina Tradicional China , Enfermedad Crónica , Modelos Animales
15.
BMC Plant Biol ; 22(1): 428, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071408

RESUMEN

BACKGROUND: Calmodulin-binding transcription activators (CAMTAs) are relatively conserved calmodulin-binding transcription factors widely found in eukaryotes and play important roles in plant growth and stress response. CAMTA transcription factors have been identified in several plant species, but the family members and functions have not yet been identified and analyzed in quinoa. RESULTS: In this study, we identified seven CAMTA genes across the whole quinoa genome and analyzed the expression patterns of CqCAMTAs in root and leaf tissues. Gene structure, protein domain, and phylogenetic analyses showed that the quinoa CAMTAs were structurally similar and clustered into the same three major groups as other plant CAMTAs. A large number of stress response-related cis-elements existed in the 2 kb promoter region upstream of the transcription start site of the CqCAMTA genes. qRT-PCR indicated that CqCAMTA genes were expressed differentially under PEG treatments in leaves, and responded to drought stress in leaves and roots. In particular, the CqCAMTA03 gene strongly responded to drought. The transient expression of CqCAMTA03-GFP fusion protein in the tobacco leaf showed that CqCAMTA03 was localized in the nucleus. In addition, transgenic Arabidopsis lines exhibited higher concentration levels of the antioxidant enzymes measured, including POD, SOD, and CAT, under drought conditions with very low levels of H2O2 and MDA. Moreover, relative water content and the degree of stomatal opening showed that the transgenic Arabidopsis lines were more tolerant of both stress factors as compared to their wild types. CONCLUSION: In this study, the structures and functions of the CAMTA family in quinoa were systematically explored. Many CAMTAs may play vital roles in the regulation of organ development, growth, and responses to drought stress. The results of the present study serve as a basis for future functional studies on the quinoa CAMTA family.


Asunto(s)
Arabidopsis , Sequías , Arabidopsis/metabolismo , Calmodulina/metabolismo , Peróxido de Hidrógeno/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética
16.
Cancer Cell Int ; 22(1): 21, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033072

RESUMEN

BACKGROUND: Molecular markers play an important role in predicting clinical outcomes in pancreatic adenocarcinoma (PAAD) patients. Analysis of the ferroptosis-related genes may provide novel potential targets for the prognosis and treatment of PAAD. METHODS: RNA-sequence and clinical data of PAAD was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) public databases. The PAAD samples were clustered by a non-negative matrix factorization (NMF) algorithm. The differentially expressed genes (DEGs) between different subtypes were used by "limma_3.42.2" package. The R software package clusterProfiler was used for functional enrichment analysis. Then, a multivariate Cox proportional and LASSO regression were used to develop a ferroptosis-related gene signature for pancreatic adenocarcinoma. A nomogram and corrected curves were constructed. Finally, the expression and function of these signature genes were explored by qRT-PCR, immunohistochemistry (IHC) and proliferation, migration and invasion assays. RESULTS: The 173 samples were divided into 3 categories (C1, C2, and C3) and a 3-gene signature model (ALOX5, ALOX12, and CISD1) was constructed. The prognostic model showed good independent prognostic ability in PAAD. In the GSE62452 external validation set, the molecular model also showed good risk prediction. KM-curve analysis showed that there were significant differences between the high and low-risk groups, samples with a high-risk score had a worse prognosis. The predictive efficiency of the 3-gene signature-based nomogram was significantly better than that of traditional clinical features. For comparison with other models, that our model, with a reasonable number of genes, yields a more effective result. The results obtained with qPCR and IHC assays showed that ALOX5 was highly expressed, whether ALOX12 and CISD1 were expressed at low levels in tissue samples. Finally, function assays results suggested that ALOX5 may be an oncogene and ALOX12 and CISD1 may be tumor suppressor genes. CONCLUSIONS: We present a novel prognostic molecular model for PAAD based on ferroptosis-related genes, which serves as a potentially effective tool for prognostic differentiation in pancreatic cancer patients.

17.
Reprod Biol Endocrinol ; 20(1): 159, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36401313

RESUMEN

BACKGROUND: The widely accepted explanation of preeclampsia (PE) pathogenesis is insufficient trophoblast invasion and impaired uterine spiral artery remodeling. However, the underlying molecular mechanism remains unclear. METHODS: We performed transcriptome sequencing on placentas of normal and PE patients and identified 976 differentially expressed long noncoding RNAs (lncRNAs). TCF21 antisense RNA inducing demethylation (TARID) was one of the most significantly differentially expressed lncRNAs and was negatively correlated with the systolic and diastolic blood pressure in PE patients. Furthermore, we verified the effect of TARID on the biological behavior of trophoblasts and performed UID mRNA-seq to identify the effectors downstream of TARID. Then, co-transfection experiments were used to better illustrate the interaction between TARID and its downstream effector. RESULTS: We concluded that the downregulation of TARID expression may inhibit trophoblast infiltration and spiral artery remodeling through inhibition of cell migration, invasion, and tube formation mediated through the CXCL3/ERK/MAPK pathway. CONCLUSIONS: Overall, these findings suggested that TARID may be a therapeutic target for PE through the CXCL3/ERK/MAPK pathway.


Asunto(s)
Preeclampsia , ARN Largo no Codificante , Humanos , Embarazo , Femenino , Trofoblastos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Preeclampsia/etiología , ARN sin Sentido/metabolismo , Proliferación Celular/genética , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
18.
Chem Biodivers ; 19(7): e202200403, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35596060

RESUMEN

Two new nor-seco isodhilarane meroterpenoids (NSIMs), purpurogenolides F (1) and G (2), along with three known meroterpenoid analogs (3-5), were isolated from the cultures of an endophytic fungus, Penicillium purpurogenum. Structures and absolute configurations of the new NSIMs were determined based on extensive spectroscopic data analyses, including HR-ESI-MS, UV, IR, NMR chemical shift calculations together with DP4+ probability analysis, as well as ECD calculations. All the isolated meroterpenoids were assessed for their anti-inflammatory activities, and compound 4 exhibited moderate inhibitory activity against the nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells with an IC50 value of 20.85±2.31 µM.


Asunto(s)
Penicillium , Talaromyces , Animales , Lipopolisacáridos/farmacología , Ratones , Estructura Molecular , Penicillium/química , Células RAW 264.7
19.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293408

RESUMEN

The tomato yellow leaf curl virus (TYLCV) is the causal agent of one of the most severe diseases affecting tomato growth; however, nitric oxide (NO) can mediate plant resistance. This study investigated the molecular mechanism of exogenous NO donor-mediated disease resistance in tomato seedlings. Tomato seedlings were treated with sodium nitroprusside and TYLCV and subjected to phenotypic, transcriptomic, and physiological analyses. The results show that exogenous NO significantly reduced disease index, MDA content, and virus content (71.4%), significantly increased stem length and fresh weight of diseased plants (p < 0.05), and improved photosynthesis with an induction effect of up to 44.0%. In this study, it was found that the reduction in virus content caused by the increased expression of peptidase inhibitor genes was the main reason for the increased resistance in tomatoes. The peptidase inhibitor inhibited protease activity and restrained virus synthesis, while the significant reduction in virus content inevitably caused a partial weakening or shutdown of the disease response process in the diseased plant. In addition, exogenous NO also induces superoxide dismutase, peroxidase activity, fatty acid elongation, resistance protein, lignin, and monoterpene synthesis to improve resistance. In summary, exogenous NO enhances resistance in tomatoes mainly by regulating peptidase inhibitor genes.


Asunto(s)
Begomovirus , Solanum lycopersicum , Óxido Nítrico , Inhibidores de Proteasas/farmacología , Nitroprusiato/farmacología , Lignina , Enfermedades de las Plantas/genética , Begomovirus/genética , Plantones/genética , Superóxido Dismutasa , Monoterpenos , Peroxidasas , Ácidos Grasos , Péptido Hidrolasas
20.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4565-4573, 2022 Sep.
Artículo en Zh | MEDLINE | ID: mdl-36164861

RESUMEN

The pharmacodynamic substances of traditional Chinese medicine(TCM) are the basis for the research of TCM and the development of innovative drugs. However, the lack of clarity of targets and molecular mechanisms is the bottleneck problem that restricts the research of pharmacodynamic substances of TCM. Bioactive components are the material basis of the efficacy of TCM, which exert activity by regulating the corresponding targets. Therefore, it is very important to identify the targets of the bioactive components to elucidate the pharmacological mechanism of TCM. Proteins are the most important drug targets, and study of the interaction between the proteins and bioactive components of TCM plays a key role in the development of pharmacological mechanism of TCM. In recent years, the main techniques for detecting the interaction between the bioactive components and proteins include surface plasmon resonance, fluorescence resonance energy transfer, bio-layer interference, molecular docking, proteome chip, target fishing, target mutant, and protein crystallization techniques, etc. This review summarized the biological target detection techniques and their applications in locating the targets of the bioactive components in TCM in the last decade, and this paper will provide useful strategies to elucidate the pharmacological mechanisms of TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Simulación del Acoplamiento Molecular , Proteoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA