Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(10): 407, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212814

RESUMEN

Environmental capacity (EC) serves as the basis for environmental planning and management, as a key indicator for assessing environmental risk and quality, and as a foundation for achieving sustainable development. Studies on EC typically address agricultural or urban rather than pastoral areas, with few examining agro-pastoral areas. The EC of the Tibetan Plateau is particularly important, considering its importance as an agricultural area and ecological reserve. To address this gap, the Qingshizui area in Menyuan County, a typical agro-pastoral area on the Tibetan Plateau, was selected to quantify soil EC and its spatial distribution. In terms of the dynamic and static annual soil EC for this region, the heavy metals were ranked as follows, in ascending order: Cd, Hg, Co, As, Sb, Ni, Cu, Pb, Cr, and Zn. Most of the areas with high residual EC were in the west. For the 10 heavy metals, residual EC was significantly affected by geological background. For all the heavy metals except Zn and Hg, residual EC was significantly affected by soil type. The heavy metal elements in the agro-pastoral area's soil are mildly enriched, suggesting minimal human impact. The composite EC index of this soil is 0.98, indicating an intermediate EC and low health risk. This study underscores that integrating agriculture and pastoralism can optimize land use and mitigate ecological pressures associated with these practices when done separately. Our research provides valuable insights for resource optimization, environmental conservation, and enhancing the welfare of farmers and herders in the Qinghai-Tibet region.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Tibet , Suelo/química , China
2.
Sci Rep ; 14(1): 21900, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300182

RESUMEN

As the first ladder of China, the Qinghai-Tibet Plateau has always been known as the "roof of the world". Its environmental carrying capacity can be estimated more accurately than other regions because of its harsh natural environment, low population density, limited industrial and agricultural development, and low human activities. However, the current ecological risks of Co and threshold research are limited, and there is a lack of awareness of W's environmental risks. Hence, this study assessed the ecological support potential of the Bardawu region within Dulan County, Qinghai Province, using 7373 soil specimens, determined regional soil baseline measures, and applied the substance equilibrium linear technique along with the ecological aggregate indicator technique to examine the heavy metal content of the soil. A comprehensive evaluation of the environmental capacity and health risks was conducted to provide a reference for pastoral planning. The findings indicated that the cumulative static ecological capacity of the six trace heavy elements in the soil was ranked as follows: Cr > Li > Ni > Cu > W > Co, with W and Co positioned as the final pair. The remaining areas with a high environmental capacity were predominantly found in the study zone. The central sector exhibited diminished environmental capacity in the southwest and northeast and presented a contamination hazard. Land use, soil type, and geological type considerably affected the six elements in the study area at the p < 0.05. The Bardawu region's mean comprehensive index of soil environmental capacity was 0.98, indicating an intermediate level of environmental capacity and a moderate health risk. This study focuses on the geological context and influence of pastoral activities on the soil, augments the distribution of various elements across the Tibetan Plateau, and suggests preliminary soil governance strategies. The findings of this study lay the groundwork for soil environmental conservation and remediation efforts in highland regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA