Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125787

RESUMEN

The utility of the mitochondrial genomes (mitogenomes) in analyzing the evolutionary history of animals has been proven. Five deep-sea corals (Bathypathes sp.1, Bathypathes sp.2, Schizopathidae 1, Trissopathes sp., and Leiopathes sp.) were collected in the South China Sea (SCS). Initially, the structures and collinearity of the five deep-sea coral mitogenomes were analyzed. The gene arrangements in the five deep-sea coral mitogenomes were similar to those in the order Antipatharia, which evidenced their conservation throughout evolutionary history. Additionally, to elucidate the slow evolutionary rates in Hexacorallia mitogenomes, we conducted comprehensive analyses, including examining phylogenetic relationships, performing average nucleotide identity (ANI) analysis, and assessing GC-skew dissimilarity combining five deep-sea coral mitogenomes and 522 reference Hexacorallia mitogenomes. Phylogenetic analysis using 13 conserved proteins revealed that species clustered together at the order level, and they exhibited interspersed distributions at the family level. The ANI results revealed that species had significant similarities (identity > 85%) within the same order, while species from different orders showed notable differences (identity < 80%). The investigation of the Hexacorallia mitogenomes also highlighted that the GC-skew dissimilarity was highly significant at the order level, but not as pronounced at the family level. These results might be attributed to the slow evolution rate of Hexacorallia mitogenomes and provide evidence of mitogenomic diversity. Furthermore, divergence time analysis revealed older divergence times assessed via mitogenomes compared with nuclear data, shedding light on significant evolutionary events shaping distinct orders within Hexacorallia corals. Those findings provide new insights into understanding the slow evolutionary rates of deep-sea corals in all lineages of Hexacorallia using their mitogenomes.


Asunto(s)
Antozoos , Evolución Molecular , Genoma Mitocondrial , Filogenia , Antozoos/genética , Antozoos/clasificación , Animales , Composición de Base
2.
Environ Microbiol ; 21(11): 4092-4108, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31344308

RESUMEN

The low temperature and elevated hydrostatic pressure in hadal trenches at water depths below 6000 m render sample collection difficult. Here, in situ hadal water microbial samples were collected from the Mariana Trench and analysed. The hadal microbial communities at different depths were revealed to be consistent and were dominated by heterotrophic Marinimicrobia. Thirty high-quality metagenome-assembled genomes (MAGs) were retrieved to represent the major hadal microbes affiliated with 12 prokaryotic phyla. Most of the MAGs were newly reported and probably derived from novel hadal inhabitants as exemplified by a potentially new candidate archaeal phylum in the DPANN superphylum. Metabolic reconstruction indicated that a great number of the MAGs participated in nitrogen and sulfur cycling, in which the nitrification process was driven sequentially by Thaumarchaeota and Nitrospirae and sulfur oxidization by Rhodospirillales in the Alphaproteobacteria class. Moreover, several groups of hadal microbes were revealed to be potential carbon monoxide oxidizers. Metatranscriptomic result highlighted the contribution of Chloroflexi in degrading recalcitrant dissolved organic matter and Marinimicrobia in extracellular protein decomposition. The present work provides an in-depth view on the hadal microbial communities regarding their endemism and element cycles.


Asunto(s)
Alphaproteobacteria/metabolismo , Archaea/metabolismo , Chloroflexi/metabolismo , Gammaproteobacteria/metabolismo , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Archaea/clasificación , Archaea/genética , Chloroflexi/clasificación , Chloroflexi/genética , Ecología , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Procesos Heterotróficos , Metagenoma , Microbiota/genética , Nitrificación/fisiología , Océano Pacífico
3.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30446553

RESUMEN

In subduction zones, serpentinization and biological processes may release alkanes to the deep waters, which would probably result in the rapid spread of Alcanivorax However, the timing and area of the alkane distribution and associated enrichment of alkane-degrading microbes in the dark world of the deep ocean have not been explored. In this study, we report the richness (up to 17.8%) of alkane-degrading bacteria, represented by Alcanivorax jadensis, in deep water samples obtained at 3,000 to 6,000 m in the Mariana Trench in two cruises. The relative abundance of A. jadensis correlated with copy numbers of functional almA and alkB genes, which are involved in alkane degradation. In these water samples, we detected a high flux of alkanes, which probably resulted in the prevalence of A. jadensis in the deep waters. Contigs of A. jadensis were binned from the metagenomes for examination of alkane degradation pathways and deep sea-specific pathways, which revealed a lack of nitrate and nitrite dissimilatory reduction in our A. jadensis strains. Comparing the results for the two cruises conducted close to each other, we suggest periodic release of alkanes that may spread widely but periodically in the trench. Distribution of alkane-degrading bacteria in the world's oceans suggests the periodic and remarkable contributions of Alcanivorax to the deep sea organic carbon and nitrogen sources.IMPORTANCE In the oligotrophic environment of the Mariana Trench, alkanes as carbohydrates are important for the ecosystem, but their spatial and periodic spreading in deep waters has never been reported. Alkane-degrading bacteria such as Alcanivorax spp. are biological signals of the alkane distribution. In the present study, Alcanivorax was abundant in some waters, at depths of up to 6,000 m, in the Mariana Trench. Genomic, transcriptomic, and chemical analyses provide evidence for the presence and activities of Alcanivorax jadensis in deep sea zones. The periodic spreading of alkanes, probably from the subductive plates, might have fundamentally modified the local microbial communities, as well as perhaps the deep sea microenvironment.


Asunto(s)
Alcanivoraceae/metabolismo , Alcanos/metabolismo , Agua de Mar/microbiología , Alcanivoraceae/clasificación , Alcanivoraceae/genética , Alcanivoraceae/aislamiento & purificación , Alcanos/análisis , Biodegradación Ambiental , Ecosistema , Nitratos/metabolismo , Nitritos/metabolismo , Filogenia , Agua de Mar/química
4.
Mar Environ Res ; 195: 106354, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224625

RESUMEN

Cold-water coral (CWC) communities are biodiversity hotspots on the world's deep seafloor. Although deep-sea corals in the South China Sea (SCS) have been reported before, they are only sporadic. A comprehensive and systematic understanding of the CWC in the SCS would forge the basis for future protection. Here we conducted the first systematic survey on the CWCs in the following six broad-scale sub-regions, from the northwest and northeast slopes to the seamounts in the western and central basins of the SCS, through twenty-four dives of the human-occupied vehicle ShenhaiYongshi. Statistical analysis provided detailed information on the distribution, abundance, size, diversity, and density of CWCs and the in situ environmental conditions supporting coral habitats. We found that the SCS hosted highly diversified coral communities, including twelve genera of gorgonians, six genera of black corals, and one genus of stony corals. The differences in the spatial distribution patterns of coral communities suggested that several environmental variables (depth, temperature, salinity, substrate, and geomorphology) might influence the development of CWCs in the SCS. The intermediate water layer of the SCS appeared to provide suitable habitat for deep-sea coral communities and potentially promoted connectivity. Furthermore, differences between sub-regions within the SCS may be an important factor responsible for the biogeographic patterns of CWCs. These sub-regions of CWCs were observed to range from 0.004 to 0.622 corals m-2, with an average of 0.139 corals m-2. The mean density of CWCs in the SCS was relatively high compared to well-studied CWC hotspots. Overall, the results revealed the significance of the SCS as an important CWC hotspot in the world. These findings provide a fundamental basis for the protection of deep-sea coral assemblages in the SCS.


Asunto(s)
Antozoos , Animales , Humanos , Ecosistema , Agua , Temperatura , China , Arrecifes de Coral
5.
Zool Res ; 45(1): 215-225, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38247179

RESUMEN

A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1 633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea (SCS). Based on mitochondrial genomic characteristics, morphological examination, and sclerite scanning electron microscopy, the samples were categorized into four suborders (Calcaxonia, Holaxonia, Scleraxonia, and Stolonifera), and identified as 9 possible new cold-water coral species. Assessments of GC-skew dissimilarity, phylogenetic distance, and average nucleotide identity (ANI) revealed a slow evolutionary rate for the octocoral mitochondrial sequences. The nonsynonymous ( Ka) to synonymous ( Ks) substitution ratio ( Ka/ Ks) suggested that the 14 protein-coding genes (PCGs) were under purifying selection, likely due to specific deep-sea environmental pressures. Correlation analysis of the median Ka/ Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b (cyt b) and DNA mismatch repair protein ( mutS) may be influenced by environmental factors in the context of deep-sea species formation. This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals.


Asunto(s)
Antozoos , Genoma Mitocondrial , Animales , Antozoos/genética , Filogenia , China , Citocromos b/genética
6.
Microorganisms ; 10(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014047

RESUMEN

Deep-sea water columns are enriched with SAR202 that may conduct detrital matter degradation. There are several subclusters in SAR202, but their subtle differences in geochemical cycles are largely unknown, particularly for their in situ activities in the marine deep zone. Deep-sea DNA/RNA samples obtained from 12 continuous time periods over two days by in situ nucleic acid collection apparatus were used to re-evaluate the ecological functions of each SAR202 subcluster at a depth of ~1000 m in the South China Sea (SCS). Phylogenomics of 32 new SAR202 genomes from the SCS and western Pacific revealed their distribution in five subclusters. Metatranscriptomics analysis showed that the subclusters II and III were the dominant SAR202 groups with higher transcriptional activities in the SCS deep-sea zone than other subclusters. The analyses of functional gene expression further indicated that SAR202 subclusters II and III might be involved in different metabolic pathways in the deep-sea environment. The SAR202 subcluster III might take part in the degradation of deep-sea aromatic compounds. Time-course metagenomics and metatranscriptomics data did not show metabolic correlation of subclusters II and III over two days, suggesting diversified ecological functions of SAR202 subclusters under different organic inputs from the overlying water column. Collectively, our results indicate that the SAR202 subclusters play different roles in organic degradation and have probably undergone subtle and gradual adaptive evolution in the dynamic environment of the deep ocean.

7.
mSystems ; 7(3): e0007722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35430893

RESUMEN

Thermoplasmatota have been widely reported in a variety of ecosystems, but their distribution and ecological role in marine sediments are still elusive. Here, we obtained four draft genomes affiliated with the former RBG-16-68-12 clade, which is now considered a new order, "Candidatus Yaplasmales," of the Thermoplasmatota phylum in sediments from the South China Sea. The phylogenetic trees based on the 16S rRNA genes and draft genomes showed that "Ca. Yaplasmales" archaea are composed of three clades: A, B, and C. Among them, clades A and B are abundantly distributed (up to 10.86%) in the marine anoxic sediment layers (>10-cm depth) of six of eight cores from 1,200- to 3,400-m depths. Metabolic pathway reconstructions indicated that all clades of "Ca. Yaplasmales" have the capacity for alkane degradation by predicted alkyl-succinate synthase. Clade A of "Ca. Yaplasmales" might be mixotrophic microorganisms for the identification of the complete Wood-Ljungdahl pathway and putative genes involved in the degradation of aromatic and halogenated organic compounds. Clades B and C were likely heterotrophic, especially with the potential capacity of the spermidine/putrescine and aromatic compound degradation, as suggested by a significant negative correlation between the concentrations of aromatic compounds and the relative abundances of clade B. The sulfide-quinone oxidoreductase and pyrophosphate-energized membrane proton pump were encoded by all genomes of "Ca. Yaplasmales," serving as adaptive strategies for energy production. These findings suggest that "Ca. Yaplasmales" might synergistically transform benthic pollutant and detrital organic matter, possibly playing a vital role in the marine and terrestrial sedimentary carbon cycle. IMPORTANCE Deep oceans receive large amounts of complex organic carbon and anthropogenic pollutants. The deep-sea sediments of the continental slopes serve as the biggest carbon sink on Earth. Particulate organic carbons and detrital proteins accumulate in the sediment. The microbially mediated recycling of complex organic carbon is still largely unknown, which is an important question for carbon budget in global oceans and maintenance of the deep-sea ecosystem. In this study, we report the prevalence (up to 10.86% of the microbial community) of archaea from a novel order of Thermoplasmatota, "Ca. Yaplasmales," in six of eight cores from 1,200- to 3,400-m depths in the South China Sea. We provide genomic evidence of "Ca. Yaplasmales" in the anaerobic microbial degradation of alkanes, aliphatic and monoaromatic hydrocarbons, and halogenated organic compounds. Our study identifies the key archaeal players in anoxic marine sediments, which are probably critical in recycling the complex organic carbon in global oceans.


Asunto(s)
Carbono , Microbiota , Carbono/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Archaea/genética , Genómica , Microbiota/genética , Compuestos Orgánicos/metabolismo
8.
Microorganisms ; 9(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916768

RESUMEN

Bdellovibrionota is composed of obligate predators that can consume some Gram-negative bacteria inhabiting various environments. However, whether genomic traits influence their distribution and marine adaptation remains to be answered. In this study, we performed phylogenomics and comparative genomics studies using 132 Bdellovibrionota genomes along with five metagenome-assembled genomes (MAGs) from deep sea zones. Four phylogenetic groups, Oligoflexia, Bdello-group1, Bdello-group2 and Bacteriovoracia, were revealed by constructing a phylogenetic tree, of which 53.84% of Bdello-group2 and 48.94% of Bacteriovoracia were derived from the ocean. Bacteriovoracia was more prevalent in deep sea zones, whereas Bdello-group2 was largely distributed in the epipelagic zone. Metabolic reconstruction indicated that genes involved in chemotaxis, flagellar (mobility), type II secretion system, ATP-binding cassette (ABC) transporters and penicillin-binding protein were necessary for the predatory lifestyle of Bdellovibrionota. Genes involved in glycerol metabolism, hydrogen peroxide (H2O2) degradation, cell wall recycling and peptide utilization were ubiquitously present in Bdellovibrionota genomes. Comparative genomics between marine and non-marine Bdellovibrionota demonstrated that betaine as an osmoprotectant is probably widely used by marine Bdellovibrionota, and all the marine genomes have a number of genes for adaptation to marine environments. The genes encoding chitinase and chitin-binding protein were identified for the first time in Oligoflexia, which implied that Oligoflexia may prey on a wider spectrum of microbes. This study expands our knowledge on adaption strategies of Bdellovibrionota inhabiting deep seas and the potential usage of Oligoflexia for biological control.

9.
PLoS One ; 12(4): e0175033, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28380032

RESUMEN

Aquaporin 1 (AQP1) is a member of the transmembrane water channel family of proteins with special structural features, and two AQP1 paralogous genes (aqp1aa and aqp1ab) are reported in teleosts. In the present study, the aqp1aa gene of half-smooth tongue sole (Cynoglossus semilaevis) was cloned and characterized. The full-length cDNA of aqp1aa is 1411 bp with a 786 bp open reading frame encoding a 261-amino acid putative protein with a characteristic structure consisting of 6 membrane-spanning α-helical domains and two highly conserved asparagine-proline-alanine motifs. Real-time quantitative PCR revealed that aqp1aa mRNA is expressed predominantly in the testis of males and pseudo-males, while its expression is low in the ovary and lowest in doublesex and mab-3-related transcription factor 1(DMRT1) knock out fish and triploid males. In situ hybridization indicated that aqp1aa mRNA is expressed mainly in the germ cells of males and pseudo-males, especially in spermatozoa and spermatids. These results suggest that the aqp1aa may play a role in spermatogenesis of C. semilaevis.


Asunto(s)
Acuaporina 1/genética , Peces Planos/genética , Animales , Acuaporina 1/metabolismo , Clonación Molecular , Femenino , Peces Planos/metabolismo , Perfilación de la Expresión Génica , Hibridación in Situ , Masculino , Ovario/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Espermatogénesis/genética , Testículo/metabolismo
10.
Sci Rep ; 7: 42213, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205594

RESUMEN

Chinese tongue sole is a marine fish with ZW sex determination. Genome sequencing suggested that the Z-linked dmrt1 is a putative male determination gene, but direct genetic evidence is still lacking. Here we show that TALEN of dmrt1 efficiently induced mutations of this gene. The ZZ dmrt1 mutant fish developed ovary-like testis, and the spermatogenesis was disrupted. The female-related genes foxl2 and cyp19a1a were significantly increased in the gonad of the ZZ dmrt1 mutant. Conversely, the male-related genes Sox9a and Amh were significantly decreased. The dmrt1 deficient ZZ fish grew much faster than ZZ male control. Notably, we obtained an intersex ZW fish with a testis on one side and an ovary on the other side. This fish was chimeric for a dmrt1 mutation in the ovary, and wild-type dmrt1 in the testis. Our data provide the first functional evidence that dmrt1 is a male determining gene in tongue sole.


Asunto(s)
Lenguado/genética , Edición Génica , Genoma , Procesos de Determinación del Sexo/genética , Factores de Transcripción/genética , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Embrión no Mamífero/metabolismo , Femenino , Lenguado/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Microinyecciones , Mutación/genética , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Fenotipo , Diferenciación Sexual/genética , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Factores de Transcripción/metabolismo
11.
Gene ; 592(1): 215-220, 2016 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-27480167

RESUMEN

E3 ubiquitin ligases are a large gene family that plays a diversity of roles in spermatogenesis. In this study, the functional characterization of a neuralized E3 ubiquitin protein ligase 3 (neurl3) revealed its potential participation in spermatogenesis. Firstly, we found that neurl3 exhibited male-biased transcription and that its translation was predominant in testis germ cells. The knockdown of neurl3 by RNA interference caused increased transcription of spermatogenesis-related genes. These results corroborate previous studies indicating a role for neurl3 in spermatogenesis. Moreover, the levels of neurl3 transcription and testis protein ubiquitination were closely correlated. Based on these findings, we speculate that neurl3 modulates testis protein ubiquitination in a dosage-dependent manner and that this influences spermatogenesis.


Asunto(s)
Proteínas de Peces/metabolismo , Espermatogénesis , Testículo/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Proteínas de Peces/genética , Peces , Masculino , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA