Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Small ; 16(19): e1906975, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32301572

RESUMEN

DNA nanostructures as scaffolds for drug delivery, biosensing, and bioimaging are hindered by its vulnerability in physiological settings, less favorable of incorporating arbitrary guest molecules and other desirable functionalities. Noncanonical self-assembly of DNA nanostructures with small molecules in an alternative system is an attractive strategy to expand their applications in multidisciplinary fields and is rarely explored. This work reports a nitrogen-enriched carbon dots (NCDs)-mediated DNA nanostructure self-assembly strategy. Given the excellent photoluminescence and photodynamic properties of NCDs, the obtained DNA/NCDs nanocomplex holds great potential for bioimaging and anticancer therapy. NCDs can mediate DNA nanoprism (NPNCD ) self-assembly isothermally at a large temperature and pH range in a magnesium-free manner. To explore the suitability of NPNCD in potential biomedical applications, the cytotoxicity and cellular uptake efficiency of NPNCD are evaluated. NPNCD with KRAS siRNA (NPNCD K) is further conjugated for KRAS-mutated nonsmall cell lung cancer therapy. The NPNCD K shows excellent gene knockdown efficiency and anticancer effect in vitro. The current study suggests that conjugating NCDs with programmable DNA nanostructures is a powerful strategy to endow DNA nanostructures with new functionalities, and NPNCD may be a potential theranostic platform with further fine-tuned properties of CDs such as near-red fluorescence or photothermal activities.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanoestructuras , Carbono , ADN , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Nitrógeno , Medicina de Precisión , Nanomedicina Teranóstica
2.
Cell Mol Life Sci ; 72(24): 4849-66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26112597

RESUMEN

The small GTPase Rab5 has been well defined to control the vesicle-mediated plasma membrane protein transport to the endosomal compartment. However, its function in the internalization of vascular endothelial (VE)-cadherin, an important component of adherens junctions, and as a result regulating the endothelial cell polarity and barrier function remain unknown. Here, we demonstrated that lipopolysaccharide (LPS) simulation markedly enhanced the activation and expression of Rab5 in human pulmonary microvascular endothelial cells (HPMECs), which is accompanied by VE-cadherin internalization. In parallel, LPS challenge also induced abnormal cell polarity and dysfunction of the endothelial barrier in HPMECs. LPS stimulation promoted the translocation of VE-cadherin from the plasma membrane to intracellular compartments, and intracellularly expressed VE-cadherin was extensively colocalized with Rab5. Small interfering RNA (siRNA)-mediated depletion of Rab5a expression attenuated the disruption of LPS-induced internalization of VE-cadherin and the disorder of cell polarity. Furthermore, knockdown of Rab5 inhibited the vascular endothelial hyperpermeability and protected endothelial barrier function from LPS injury, both in vitro and in vivo. These results suggest that Rab5 is a critical mediator of LPS-induced endothelial barrier dysfunction, which is likely mediated through regulating VE-cadherin internalization. These findings provide evidence, implicating that Rab5a is a potential therapeutic target for preventing endothelial barrier disruption and vascular inflammation.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar , Proteínas de Unión al GTP rab5/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Polaridad Celular , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
3.
Mediators Inflamm ; 2016: 1732352, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27190491

RESUMEN

High-altitude deacclimatization syndrome (HADAS) is emerging as a severe public health issue that threatens the quality of life of individuals who return to lower altitude from high altitude. In this study, we measured serum levels of SOD, MDA, IL-17A, IL-10, TNF-α, and HADAS score in HADAS subjects at baseline and 50th and 100th days and to evaluate the relationship between interleukins, including IL-17A, and HADAS. Our data showed that and the serum IL-17A levels and HADAS score decreased over time in the HADAS group, and serum IL-17A levels were significantly higher in the HADAS group at baseline and 50th day compared with controls (p < 0.05). Furthermore, baseline serum levels of MDA and TNF-α were significantly higher, while SOD and IL-10 levels were lower in HADAS subjects compared with controls (p < 0.05). It is interesting that serum levels of IL-17A were clearly interrelated with HADAS incidence and severity (p < 0.05). ROC curve analysis showed that combined serum IL-17A and IL-10 levels were a better predictor of HADAS incidence than serum levels of IL-17A or IL-10 alone. These data suggest that serum levels of IL-17A are a novel predictive index of HADAS.


Asunto(s)
Mal de Altura/sangre , Altitud , Interleucina-17/sangre , Aclimatación/fisiología , Adolescente , Adulto , Humanos , Interleucina-10/sangre , Masculino , Factor de Necrosis Tumoral alfa/sangre , Adulto Joven
4.
Nanoscale ; 16(17): 8378-8389, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38602041

RESUMEN

Bacterial infection is one of the most serious clinical complications, with life-threatening outcomes. Nature-inspired biomaterials offer appealing microscale and nanoscale architectures that are often hard to fabricate by traditional technologies. Inspired by the light-harvesting nature, we engineered sulfuric acid-treated sunflower sporopollenin exine-derived microcapsules (HSECs) to capture light and bacteria for antimicrobial photothermal therapy. Sulfuric acid-treated HSECs show a greatly enhanced photothermal performance and a strong bacteria-capturing ability against Gram-positive bacteria. This is attributed to the hierarchical micro/nanostructure and surface chemistry alteration of HSECs. To test the potential for clinical application, an in situ bacteria-capturing, near-infrared (NIR) light-triggered hydrogel made of HSECs and curdlan is applied in photothermal therapy for infected skin wounds. HSECs and curdlan suspension that spread on bacteria-infected skin wounds of mice first capture the local bacteria and then form hydrogels on the wound upon NIR light stimulation. The combination shows a superior antibacterial efficiency of 98.4% compared to NIR therapy alone and achieved a wound healing ratio of 89.4%. The current study suggests that the bacteria-capturing ability and photothermal properties make HSECs an excellent platform for the phototherapy of bacteria-infected diseases. Future work that can fully take advantage of the hierarchical micro/nanostructure of HSECs for multiple biomedical applications is highly promising and desirable.


Asunto(s)
Biopolímeros , Cápsulas , Carotenoides , Helianthus , Terapia Fototérmica , Polen , Animales , Ratones , Helianthus/química , Polen/química , Cápsulas/química , Antibacterianos/química , Antibacterianos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Rayos Infrarrojos
5.
Autophagy ; 14(10): 1677-1692, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29965781

RESUMEN

Microvascular barrier dysfunction is the central pathophysiological feature of acute lung injury (ALI). RAB26 is a newly identified small GTPase involved in the regulation of endothelial cell (EC) permeability. However, the mechanism behind this protection has not been clearly elucidated. Here we found that RAB26 promoted the integrity of adherens junctions (AJs) in a macroautophagy/autophagy-dependent manner in ALI. RAB26 is frequently downregulated in mouse lungs after LPS treatment. Mice lacking Rab26 exhibited phosphorylated SRC expression and increased CDH5/VE-cadherin phosphorylation, leading to AJ destruction. rab26-null mice showed further aggravation of the effects of endotoxin insult on lung vascular permeability and water content. Depletion of RAB26 resulted in upregulation of phosphorylated SRC, enhancement of CDH5 phosphorylation, and aggravation of CDH5 internalization, thereby weakening AJ integrity and endothelial barrier function in human pulmonary microvascular endothelial cells (HPMECs). RAB26 overexpression caused active interaction between SRC and the autophagy marker LC3-II and promoted degradation of phosphorylated SRC. Furthermore, RAB26 was involved in a direct and activation-dependent manner in autophagy induction through interaction with ATG16L1 in its GTP-bound form. These findings demonstrate that RAB26 exerts a protective effect on endothelial cell (EC) permeability, which is in part dependent on autophagic targeting of active SRC, and the resultant CDH5 dephosphorylation maintains AJ stabilization. Thus, RAB26-mediated autophagic targeting of phosphorylated SRC can maintain barrier integrity when flux through the RAB26-SRC pathway is protected. These findings suggest that activation of RAB26-SRC signaling provides a new therapeutic opportunity to prevent vascular leakage in ALI. ABBREVIATIONS: AJs: adherens junctions; ALI: acute lung injury; ARDS: acute respiratory distress syndrome; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG 16L1: autophagy related 16 like; 1 BALF: bronchoalveolar lavage fluidCQ: chloroquine; Ctrl: control; EC: endothelial cell; GFP: green fluorescent protein; HA-tagged; RAB26WT: HA-tagged wild-type; RAB26  HA-tagged; RAB26QL: HA-tagged; RAB26Q123LHA-tagged; RAB26NI: HA-tagged; RAB26N177IHPMECs: human pulmonary microvascular endothelial cells; H&E: hematoxylin & eosin; IgG: immunoglobulin; GIF: immunofluorescence; IP: immunoprecipitationi;. p.: intraperitoneal; LPS: lipopolysaccharide; PBS: phosphate-buffered salinesi; RNA: small interfering;RNASQSTM1/p62, sequestosome; 1TBS: Tris-buffered saline; VEGF: vascular endothelial growth factor; WB: western blot; WT: wild-type.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Uniones Adherentes/metabolismo , Autofagia , Proteínas de Unión al GTP rab/metabolismo , Animales , Antígenos CD/metabolismo , Proteínas Relacionadas con la Autofagia , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Endocitosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotoxinas/toxicidad , Eliminación de Gen , Guanosina Trifosfato/metabolismo , Humanos , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Modelos Biológicos , Fosforilación/efectos de los fármacos , Unión Proteica , Proteolisis/efectos de los fármacos , Transducción de Señal , Familia-src Quinasas/metabolismo
6.
Biomaterials ; 35(14): 4401-16, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24582377

RESUMEN

The proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a key pathophysiological component of vascular remodeling in pulmonary arterial hypertension (PAH), an intractable disease, for which pharmacotherapy is limited and only slight improvement in survival outcomes have achieved over the past few decades. RNA interference provides a highly promising strategy to the treatment of this chronic lung disease, while efficient delivery of small interfering RNA (siRNA) remains a key challenge for the development of clinically acceptable siRNA therapeutics. With the aim to construct useful nanomedicines, the mammalian target of rapamycin (mTOR) siRNA was loaded into hybrid nanoparticles based on low molecular weight (Mw) polyethylenimine (PEI) and a pH-responsive cyclodextrin material (Ac-aCD) or poly(lactic-co-glycolic acid) (PLGA). This hybrid nanoplatform gave rise to desirable siRNA loading, and the payload release could be modulated by the hydrolysis characteristics of carrier materials. Fluorescence observation and flow cytometry quantification suggested that both Ac-aCD and PLGA nanovectors (NVs) may enter PASMCs under either normoxia or hypoxia conditions as well as in the presence of serum, with uptake and transfection efficiency significantly higher than those of cationic vectors such as PEI with Mw of 25 kDa (PEI25k) and Lipofectamine 2000 (Lipo 2k). Hybrid Ac-aCD or PLGA NV containing siRNA remarkably inhibited proliferation and activated apoptosis of hypoxic PASMCs, largely resulting from effective suppression of mTOR signaling as evidenced by significantly lowered expression of mTOR mRNA and phosphorylated protein. Moreover, these hybrid nanomedicines were more effective than commonly used cationic vectors like PEI25k and Lipo 2k, with respect to cell growth inhibition, apoptosis activation, and expression attenuation of mTOR mRNA and protein. Therefore, mTOR siRNA nanomedicines based on hybrid Ac-aCD or PLGA NV may be promising therapeutics for diseases related to hypoxic abnormal growth of PASMCs.


Asunto(s)
Ciclodextrinas/química , Vectores Genéticos/metabolismo , Miocitos del Músculo Liso/citología , Nanopartículas/química , Arteria Pulmonar/citología , ARN Interferente Pequeño/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis , Hipoxia de la Célula , Proliferación Celular , Endocitosis , Masculino , Nanomedicina , Nanopartículas/ultraestructura , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factores de Tiempo , Transfección
7.
Biomaterials ; 34(16): 4159-4172, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23480956

RESUMEN

The absence of safe, efficient, cost-effective, and easily scalable delivery platforms is one of the most significant hurdles and critical issues that limit the bench to bedside translation of oligonucleotides-based therapeutics. Acid-labile materials are of special interest in developing nonviral vectors due to their capability of intracellularly delivering therapeutic payload. In this study, a nanovector was designed by integrating a pH-responsive cyclodextrin material and low molecular weight polyethylenimine (PEI). Antisense oligonucleotide (ASON) Bcl-xl could be encapsulated into this hybrid nanosystem with extremely high loading efficiency by a nanoemulsion technique. The developed pH-responsive ASON nanotherapeutics could be efficiently transfected into human lung adenocarcinoma cells in a time- and dose-dependent manner, resulting in effective cell growth inhibition, significant suppression on the expression of Bcl-xl mRNA/protein, and efficient cell apoptosis. Importantly, the new nanovector showed drastically higher efficacy and lower cytotoxicity when compared with PLGA-based counterpart and commonly used cationic vectors like branched PEI (25,000 Da) and Lipofectamine 2000. This pH-responsive hybrid nanosystem may serve as a safe and efficient nonviral vector that may find wide applications in gene therapy.


Asunto(s)
Ciclodextrinas/química , Técnicas de Transferencia de Gen , Nanopartículas/química , Acetilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Vectores Genéticos , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Ácido Láctico/química , Microscopía Confocal , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Oligonucleótidos Antisentido/farmacología , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección , Virus/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
8.
PLoS One ; 8(5): e62072, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23650508

RESUMEN

The syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms. Male subjects from Chongqing (n = 67, 180 m) and Kunming (n = 70, 1800 m) visited a high-altitude area (3650 m) about 6 months and then returned to low-altitude. After they came back, all subjects were evaluated for high-altitude de-acclimatization syndrome on the 3(rd), 50(th), and 100(th). Symptom scores, routine blood and blood gas tests, and myocardial zymograms assay were used for observation their syndrome. The results showed that the incidence and severity of symptoms had decreased markedly on the 50(th) and 100(th) days, compared with the 3(rd) day. The symptom scores and incidence of different symptoms were lower among subjects returning to Kunming than among those returning to Chongqing. On the 3(rd) day, RBC, Hb, Hct, CK, CK-MB, and LDH values were significantly lower than values recorded at high altitudes, but they were higher than baseline values. On the 50(th) day, these values were not different from baseline values, but LDH levels did not return to baseline until the 100(th) day. These data show that, subjects who suffered high-altitude de-acclimatization syndrome, the recovery fully processes takes a long time (≥ 100(th) days). The appearance of the syndrome is found to be related to the changes in RBC, Hb, Hct, CK, CK-MB, and LDH levels, which should be caused by reoxygenation after hypoxia.


Asunto(s)
Aclimatación , Equilibrio Ácido-Base , Adolescente , Adulto , Altitud , Dióxido de Carbono/sangre , Estudios de Casos y Controles , Análisis por Conglomerados , Forma MB de la Creatina-Quinasa/sangre , Eritrocitos/fisiología , Hemoglobinas/metabolismo , Humanos , L-Lactato Deshidrogenasa/sangre , Masculino , Oxígeno/sangre , Síndrome , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA