Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Transl Med ; 20(1): 39, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073923

RESUMEN

BACKGROUND: The chemokine receptor CCR5 is the major coreceptor for HIV-1 cell entry. We previously observed that not all CCR5 mAbs reduce HIV-1 infection, suggesting that only some CCR5 populations are permissive for HIV-1 entry. This study aims to better understand the relevant conformational states of the cellular coreceptor, CCR5, involved in HIV entry. We hypothesized that CCR5 assumes multiple configurations during normal cycling on the plasma membrane, but only particular forms facilitate HIV-1 infection. METHODS: To this end, we quantified different CCR5 populations using six CCR5 monoclonal antibodies (mAbs) with different epitope specificities and visualized them with super-resolution microscopy. We quantified each surface CCR5 population before and after HIV-1 infection. RESULTS: Based on CCR5 conformational changes, down-modulation, and trafficking rates (internalization and recycling kinetics), we were able to distinguish among heterogeneous CCR5 populations and thus which populations might best be targeted to inhibit HIV-1 entry. We assume that a decreased surface presence of a particular CCR5 subpopulation following infection means that it has been internalized due to HIV-1 entry, and that it therefore represents a highly relevant target for future antiviral therapy strategies. Strikingly, this was most true for antibody CTC8, which targets the N-terminal region of CCR5 and blocks viral entry more efficiently than it blocks chemokine binding. CONCLUSIONS: Defining the virus-host interactions responsible for HIV-1 transmission, including specific coreceptor populations capable of establishing de novo infections, is essential for the development of an HIV-1 vaccine. This study hopefully will facilitate further development of inhibitors to block CCR5 usage by HIV-1, as well as inform future HIV-1 vaccine design.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Receptores CCR5 , Internalización del Virus
2.
J Transl Med ; 19(1): 453, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717655

RESUMEN

HIV-1 reservoirs persist in the presence of combined antiretroviral therapy (cART). However, cART has transformed HIV-1 infection into a chronic disease marked by control of HIV-1 viral load and mortality reduction. Major challenges remain, including viral resistance upon termination of cART and persistence and identification of tissue distribution of HIV-1 reservoirs. Thus, appropriate animal models that best mimic HIV-1 pathogenesis are important, and the current study complements our previously published validation of the CD34+ hematopoietic humanized mouse model for this purpose. Here we analyze viral suppression using the recently developed combination of antiretrovirals that include Tenofovir Disoproxil (TDF), Emtricitabine (FTC), and Dolutegravir (DTG), a choice based on recent clinical outcomes showing its improved antiretroviral potency, CD4+ T cell preservation, tolerability, and prevention of viral drug resistance compared to that of previous regimens. We used quantitative Airyscan-based super resolution confocal microscopy of selected mouse tissues. Our data allowed us to identify specific solid tissue reservoirs of human T cells expressing the HIV-1 core protein p24. In particular, lymph node, brain, spleen, and liver were visualized as reservoirs for residual infected cells. Marked reduction of viral replication was evident. Considering that detection and visualization of cryptic sites of HIV-1 infection in tissues are clearly crucial steps towards HIV-1 eradication, appropriate animal models with pseudo-human immune systems are needed. In fact, current studies with humans and non-human primates have limited sample availability at multiple stages of infection and cannot easily analyze the effects of differently administered combined antiretroviral treatments on multiple tissues. That is easier to manage when working with humanized mouse models, although we realize the limitations due to low human cell recovery and thus the number of cells available for thorough and comprehensive analyses. Nonetheless, our data further confirm that the CD34+ humanized mouse model is a potentially useful pre-clinical model to study and improve current anti-HIV-1 therapies.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Animales , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Emtricitabina/farmacología , Emtricitabina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Compuestos Heterocíclicos con 3 Anillos , Ratones , Oxazinas , Piperazinas , Piridonas , Tenofovir/farmacología , Tenofovir/uso terapéutico , Carga Viral
3.
Pharmaceutics ; 13(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34834213

RESUMEN

Combined antiretroviral therapy (cART) is treatment with a combination of several antiretroviral drugs that block multiple stages in the virus replication cycle. An estimated 60% of the 38 million HIV-1 patients globally receive some form of cART. The benefits of cART for controlling HIV-1 replication, transmission, and infection rates have led to its universal recommendation. Implementation has caused a substantial reduction in morbidity and mortality of persons living with HIV-1/AIDS (PLWHA). More specifically, standard cART has provided controlled, undetectable levels of viremia, high treatment efficacy, reduction in pill burden, and an improved lifestyle in HIV-1 patients overall. However, HIV-1 patients living with AIDS (HPLA) generally show high viral loads upon cART interruption. Latently infected resting CD4+ T cells remain a major barrier to curing infected patients on long-term cART. There is a critical need for more effective compounds and therapies that not only potently reactivate latently infected cells, but also lead to the death of these reactivated cells. Efforts are ongoing to better control ongoing viral propagation, including the identification of appropriate animal models that best mimic HIV-1 pathogenesis, before proceeding with clinical trials. Limited toxicity profiles, improved drug penetration to certain tissues, and extended-release formulations are needed to cover gaps in existing HIV-1 treatment options. This review will cover past, current, and new cART strategies recently approved or in ongoing development.

4.
Viruses ; 13(11)2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34834998

RESUMEN

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is primarily responsible for coronavirus disease (COVID-19) and it is characterized by respiratory illness with fever and dyspnea. Severe vascular problems and several other manifestations, including neurological ones, have also been frequently reported, particularly in the great majority of "long hauler" patients. SARS-CoV-2 infects and replicates in lung epithelial cells, while dysfunction of endothelial and neuronal brain cells has been observed in the absence of productive infection. It has been shown that the Spike protein can interact with specific cellular receptors, supporting both viral entry and cellular dysfunction. It is thus clear that understanding how and when these receptors are regulated, as well as how much they are expressed would help in unveiling the multifaceted aspects of this disease. Here, we show that SH-SY5Y neuroblastoma cells express three important cellular surface molecules that interact with the Spike protein, namely ACE2, TMPRSS2, and NRP1. Their levels increase when cells are treated with retinoic acid (RA), a commonly used agent known to promote differentiation. This increase matched the higher levels of receptors observed on HUVEC (primary human umbilical vein endothelial cells). We also show by confocal imaging that replication-defective pseudoviruses carrying the SARS-CoV-2 Spike protein can infect differentiated and undifferentiated SH-SY5Y, and HUVEC cells, although with different efficiencies. Neuronal cells and endothelial cells are potential targets for SARS-CoV-2 infection and the interaction of the Spike viral protein with these cells may cause their dysregulation. Characterizing RNA and protein expression tempo, mode, and levels of different SARS-CoV-2 receptors on both cell subpopulations may have clinical relevance for the diagnosis and treatment of COVID-19-infected subjects, including long hauler patients with neurological manifestations.


Asunto(s)
COVID-19/metabolismo , Células Endoteliales/metabolismo , Neuroblastoma/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Línea Celular Tumoral , Células Endoteliales/virología , Interacciones Microbiota-Huesped , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neuroblastoma/virología , Neuropilina-1/metabolismo , Serina Endopeptidasas/metabolismo , Internalización del Virus
5.
J AIDS HIV Treat ; 2(1): 23-29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457941

RESUMEN

Despite decades of intensive basic and clinical research efforts, there is still no successful vaccine candidate against human immunodeficiency virus (HIV-1). Standard combined antiretroviral therapy (cART) has been successfully developed and has given remarkable results suppressing HIV-1 infection and transmission. However, cART cannot fully clear the virus from the infected patients. A cure for HIV-1 is highly desirable to stop both the spread of the virus in humans and disease progression in HIV-1 patients. A safe and effective cure strategy for HIV-1 infection will require appropriate animal models that properly mimic HIV-1 infection and advance HIV-1 cure research. Animal models have been a crucial tool in the drug discovery process for investigation of HIV-1 disease mainly in preclinical evaluations of antiretroviral drugs and vaccines. An ideal animal model should recapitulate the main aspects of human-specific HIV-1 infection and pathogenesis with their associated immune responses, while permitting invasive antiretroviral studies. The best humanized mouse models would allow a thorough evaluation of antiretroviral strategies that are aimed towards reducing the establishment and size of the HIV-1 reservoirs. In this review, we evaluate multiple humanized mouse models while presenting their strengths and limitations for HIV-1 research. These humanized mouse models have been tailored in recent decades and heavily employed to address specific quintessential and remaining questions of HIV-1 persistence, pathogenesis and ultimately, eradication.

6.
AIDS Res Hum Retroviruses ; 36(10): 835-841, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623916

RESUMEN

The efficacy of combined antiretroviral therapy (cART) against HIV-1 is evidenced by reduction of plasma viremia, disease progression, viral transmission, and mortality. However, major challenges still remain in HIV-1 management, especially the emergence of resistant strains and the persistence of viral reservoirs, apparent after cART treatment interruption. Efforts are ongoing to explore the most effective means to intensify cART and successfully control residual viral replication. We anticipate that the reduction by cART of HIV-1 reservoirs could be further enhanced by combining cART with entry inhibitors and drugs that silence CCR5 expression. CCR5-targeting drugs are attractive option because of their low side effects when combined with other antiretroviral drugs. The concept that their inclusion would be effective has been supported by the reduction in two long terminal repeat unintegrated circular DNA, a marker for new infections, when CCR5-targeting drugs are added to standard antiretroviral treatment. This study is, in part, an extension of our previous study demonstrating greater preservation of human CD4+ T-cells and CD4+/CD8+ cell ratios in HIV-infected CD34+ NSG mice when CCR5-targeting drugs were included with standard cART. In this study, we treated HIV-1-infected cell cultures with cART or cART plus CCR5-targeting drugs (maraviroc and rapamycin). We found that treatment intensification with CCR5-targeting drugs led to a significant reduction of HIV-1 replication in peripheral blood ononuclear cells (PBMCs), as judged by measured viral DNA copies and p24 levels. Our data provide proof of principle for the benefit of adding CCR5-targeting drugs to traditional, standard cART to further lower viremia and subsequently reduce viral reservoirs in clinical settings, while potentially lowering side effects by reducing cART concentrations.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Preparaciones Farmacéuticas , Animales , Fármacos Anti-VIH/uso terapéutico , Relación CD4-CD8 , Infecciones por VIH/tratamiento farmacológico , Humanos , Maraviroc , Ratones , Receptores CCR5 , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA