Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(9): 090502, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32202854

RESUMEN

We discuss quantum annealing of the two-dimensional transverse-field Ising model on a D-Wave device, encoded on L×L lattices with L≤32. Analyzing the residual energy and deviation from maximal magnetization in the final classical state, we find an optimal L dependent annealing rate v for which the two quantities are minimized. The results are well described by a phenomenological model with two powers of v and L-dependent prefactors to describe the competing effects of reduced quantum fluctuations (for which we see evidence of the Kibble-Zurek mechanism) and increasing noise impact when v is lowered. The same scaling form also describes results of numerical solutions of a transverse-field Ising model with the spins coupled to noise sources. We explain why the optimal annealing time is much longer than the coherence time of the individual qubits.

2.
Phys Rev Lett ; 122(1): 010602, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012730

RESUMEN

We reveal a continuous dynamical heating transition between a prethermal and an infinite-temperature stage in a clean, chaotic periodically driven classical spin chain. The transition time is a steep exponential function of the drive frequency, showing that the exponentially long-lived prethermal plateau, originally observed in quantum Floquet systems, survives the classical limit. Even though there is no straightforward generalization of Floquet's theorem to nonlinear systems, we present strong evidence that the prethermal physics is well described by the inverse-frequency expansion. We relate the stability and robustness of the prethermal plateau to drive-induced synchronization not captured by the expansion. Our results set the pathway to transfer the ideas of Floquet engineering to classical many-body systems, and are directly relevant for photonic crystals and cold atom experiments in the superfluid regime.

3.
Phys Rev Lett ; 122(2): 020601, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30720331

RESUMEN

We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glasslike transition controlled by the protocol time duration. The glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold learning algorithm t-distributed stochastic neighbor embedding, we are able to visualize the geometry of the high-dimensional control landscape in an effective low-dimensional representation. Across the transition, the control landscape features an exponential number of clusters separated by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but unexpected connection between optimal quantum control and spin glass physics, and shows how tools from ML can be used to visualize and understand glassy optimization landscapes.

4.
Phys Rev Lett ; 121(11): 117202, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30265096

RESUMEN

We study the Néel-paramagnetic quantum phase transition in two-dimensional dimerized S=1/2 Heisenberg antiferromagnets using finite-size scaling of quantum Monte Carlo data. We resolve the long-standing issue of the role of cubic interactions arising in the bond-operator representation when the dimer pattern lacks a certain symmetry. We find nonmonotonic (monotonic) size dependence in the staggered (columnar) dimerized model, where cubic interactions are (are not) present. We conclude that there is a new irrelevant field in the staggered model, but, at variance with previous claims, it is not the leading irrelevant field. The new exponent is ω_{2}≈1.25 and the prefactor of the correction L^{-ω_{2}} is large and comes with a different sign from that of the conventional correction with ω_{1}≈0.78. Our study highlights competing scaling corrections at quantum critical points.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA