Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Bacteriol ; 199(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28507241

RESUMEN

Sigma (σ) factors direct gene transcription by binding to and determining the promoter recognition specificity of RNA polymerase (RNAP) in bacteria. Genes transcribed under the control of alternative sigma factors allow cells to respond to stress and undergo developmental processes, such as sporulation in Bacillus subtilis, in which gene expression is controlled by a cascade of alternative sigma factors. Binding of sigma factors to RNA polymerase depends on the coiled-coil (or clamp helices) motif of the ß' subunit. We have identified an amino acid substitution (L257P) in the coiled coil that markedly inhibits the function of σH, the earliest-acting alternative sigma factor in the sporulation cascade. Cells with this mutant RNAP exhibited an early and severe block in sporulation but not in growth. The mutant was strongly impaired in σH-directed gene expression but not in the activity of the stress-response sigma factor σB Pulldown experiments showed that the mutant RNAP was defective in associating with σH but could still associate with σA and σB The differential effects of the L257P substitution on sigma factor binding to RNAP are likely due to a conformational change in the ß' coiled coil that is specifically detrimental for interaction with σH This is the first example, to our knowledge, of an amino acid substitution in RNAP that exhibits a strong differential effect on a particular alternative sigma factor.IMPORTANCE In bacteria, all transcription is mediated by a single multisubunit RNA polymerase (RNAP) enzyme. However, promoter-specific transcription initiation necessitates that RNAP associates with a σ factor. Bacteria contain a primary σ factor that directs transcription of housekeeping genes and alternative σ factors that direct transcription in response to environmental or developmental cues. We identified an amino acid substitution (L257P) in the B. subtilis ß' subunit whereby RNAPL257P associates with some σ factors (σA and σB) and enables vegetative cell growth but is defective in utilization of σH and is consequently blocked for sporulation. To our knowledge, this is the first identification of an amino acid substitution within the core enzyme that affects utilization of a specific sigma factor.


Asunto(s)
Bacillus subtilis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Factor sigma , Sustitución de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Modelos Moleculares , Conformación Proteica
2.
PLoS Comput Biol ; 12(5): e1004935, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27175900

RESUMEN

Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators.


Asunto(s)
Activación Transcripcional , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Biología Computacional , Lógica Difusa , Complejo Mediador/química , Complejo Mediador/genética , Complejo Mediador/metabolismo , Simulación de Dinámica Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nucleic Acids Res ; 42(20): 12523-36, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25352558

RESUMEN

Most DNA-binding bacterial transcription factors contact DNA through a recognition α-helix in their DNA-binding domains. An emerging class of DNA-binding transcription factors, predominantly found in pathogenic bacteria interact with the DNA via a relatively novel type of DNA-binding domain, called the LytTR domain, which mainly comprises ß strands. Even though the crystal structure of the LytTR domain of the virulence gene transcription factor AgrA from Staphylococcus aureus bound to its cognate DNA sequence is available, the contribution of specific amino acid residues in the LytTR domain of AgrA to transcription activation remains elusive. Here, for the first time, we have systematically investigated the role of amino acid residues in transcription activation in a LytTR domain-containing transcription factor. Our analysis, which involves in vivo and in vitro analyses and molecular dynamics simulations of S. aureus AgrA identifies a highly conserved tyrosine residue, Y229, as a major amino acid determinant for maximal activation of transcription by AgrA and provides novel insights into structure-function relationships in S. aureus AgrA.


Asunto(s)
Proteínas Bacterianas/química , Staphylococcus aureus/genética , Transactivadores/química , Activación Transcripcional , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutagénesis , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Relación Estructura-Actividad , Transactivadores/genética , Transactivadores/metabolismo , Factores de Virulencia/genética
4.
Nucleic Acids Res ; 41(11): 5874-86, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23609536

RESUMEN

The formation of the open promoter complex (RPo) in which the melted DNA containing the transcription start site is located at the RNA polymerase (RNAP) catalytic centre is an obligatory step in the transcription of DNA into RNA catalyzed by RNAP. In the RPo, an extensive network of interactions is established between DNA, RNAP and the σ-factor and the formation of functional RPo occurs via a series of transcriptional intermediates (collectively 'RPi'). A single tryptophan is ideally positioned to directly engage with the flipped out base of the non-template strand at the +1 site. Evidence suggests that this tryptophan (i) is involved in either forward translocation or DNA scrunching and (ii) in σ(54)-regulated promoters limits the transcription activity of at least one intermediate complex (RPi) before the formation of a fully functional RPo. Limiting RPi activity may be important in preventing the premature synthesis of abortive transcripts, suggesting its involvement in a general mechanism driving the RPi to RPo transition for transcription initiation.


Asunto(s)
Proteínas Bacterianas/química , ARN Polimerasas Dirigidas por ADN/química , Iniciación de la Transcripción Genética , Triptófano/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Archaea/enzimología , Bacterias/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , ADN/química , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Elementos de Facilitación Genéticos , Eucariontes/enzimología , Holoenzimas/metabolismo , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Sitio de Iniciación de la Transcripción
5.
Nucleic Acids Res ; 39(2): 464-74, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20851833

RESUMEN

RNA polymerases (RNAPs) require basal transcription factors to assist them during transcription initiation. One of these factors, TFIIB, combines promoter recognition, recruitment of RNAP, promoter melting, start site selection and various post-initiation functions. The ability of 381 site-directed mutants in the TFIIB 'linker domain' to stimulate abortive transcription was systematically quantitated using promoter-independent dinucleotide extension assays. The results revealed two distinct clusters (mjTFIIB E78-R80 and mjTFIIB R90-G94, respectively) that were particularly sensitive to substitutions. In contrast, a short sequence (mjTFIIB A81-K89) between these two clusters tolerated radical single amino acid substitutions; short deletions in that region even caused a marked increase in the ability of TFIIB to stimulate abortive transcription ('superstimulation'). The superstimulating activity did, however, not correlate with increased recruitment of the TFIIB/RNAP complex because substitutions in a particular residue (mjTFIIB K87) increased recruitment by more than 5-fold without affecting the rate of abortive transcript stimulation. Our work demonstrates that highly localized changes within the TFIIB linker have profound, yet surprisingly disconnected, effects on RNAP recruitment, TFIIB/RNAP complex stability and the rate of transcription initiation. The identification of superstimulating TFIIB variants reveals the existence of a previously unknown rate-limiting step acting on the earliest stages of gene expression.


Asunto(s)
Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/metabolismo , Activación Transcripcional , Sustitución de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Methanococcales/genética , Mutación , Fenotipo , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo , Eliminación de Secuencia , Factor de Transcripción TFIIB/genética
6.
J Biol Chem ; 286(16): 14469-79, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21357417

RESUMEN

Transcription, the synthesis of RNA from a DNA template, is performed by multisubunit RNA polymerases (RNAPs) in all cellular organisms. The bridge helix (BH) is a distinct feature of all multisubunit RNAPs and makes direct interactions with several active site-associated mobile features implicated in the nucleotide addition cycle and RNA and DNA binding. Because the BH has been captured in both kinked and straight conformations in different crystals structures of RNAP, recently supported by molecular dynamics studies, it has been proposed that cycling between these conformations is an integral part of the nucleotide addition cycle. To further evaluate the role of the BH, we conducted systematic alanine scanning mutagenesis of the Escherichia coli RNAP BH to determine its contributions to activities required for transcription. Combining our data with an atomic model of E. coli RNAP, we suggest that alterations in the interactions between the BH and (i) the trigger loop, (ii) fork loop 2, and (iii) switch 2 can help explain the observed changes in RNAP functionality associated with some of the BH variants. Additionally, we show that extensive defects in E. coli RNAP functionality depend upon a single previously not studied lysine residue (Lys-781) that is strictly conserved in all bacteria. It appears that direct interactions made by the BH with other conserved features of RNAP are lost in some of the E. coli alanine substitution variants, which we infer results in conformational changes in RNAP that modify RNAP functionality.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Alanina/química , Secuencia de Aminoácidos , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Prueba de Complementación Genética , Lisina/química , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Sinorhizobium meliloti/genética
7.
Methods Mol Biol ; 2466: 93-109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585313

RESUMEN

A completely automated purification of glutathione-S-transferase (GST) fusion proteins, either in soluble form or after renaturation of insoluble inclusion bodies, is described. Depending on the expression levels and the amount of glutathione affinity matrix employed, the protocol yields approximately 30-100 µg of purified GST-fusion protein from 2 mL microplate cultures. The high yield is facilitated by employing an efficient chemical/enzymatic lysis procedure for preparing bacterial cell lysates. Insoluble GST-fusion proteins are automatically refolded by a high-throughput robotic microdialysis procedure that also assesses the degree of successful refolding by integrated GST enzymatic assays and quantitation of soluble protein successfully recovered after affinity purification. For soluble GST-fusion proteins the purification procedure is normally completed within 60 min, whereas urea-based denaturation-renaturation strategies typically require an additional 18 h. The integration of quantitation of cell growth and affinity-purified GST-fusion protein yield allows direct comparisons of different expression constructs and the yield of soluble GST-fusion proteins to be optimized in a systematic manner.


Asunto(s)
Glutatión Transferasa , Procedimientos Quirúrgicos Robotizados , Cromatografía de Afinidad/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
8.
Archaea ; 2011: 608385, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22312317

RESUMEN

The availability of in vitro assembly systems to produce recombinant archaeal RNA polymerases (RNAPs) offers one of the most powerful experimental tools for investigating the still relatively poorly understood molecular mechanisms underlying RNAP function. Over the last few years, we pioneered new robot-based high-throughput mutagenesis approaches to study structure/function relationships within various domains surrounding the catalytic center. The Bridge Helix domain, which appears in numerous X-ray structures as a 35-amino-acid-long alpha helix, coordinates the concerted movement of several other domains during catalysis through kinking of two discrete molecular hinges. Mutations affecting these kinking mechanisms have a direct effect on the specific catalytic activity of RNAP and can in some instances more than double it. Molecular dynamics simulations have established themselves as exceptionally useful for providing additional insights and detailed models to explain the underlying structural motions.


Asunto(s)
Archaea/enzimología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN/metabolismo , Secuencia de Aminoácidos , Archaea/química , Archaea/genética , Catálisis , Análisis Mutacional de ADN , ARN Polimerasas Dirigidas por ADN/genética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica
9.
Biochem Soc Trans ; 39(1): 31-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21265743

RESUMEN

RNAPs (RNA polymerases) are complex molecular machines that contain a highly conserved catalytic site surrounded by conformationally flexible domains. High-throughput mutagenesis in the archaeal model system Methanocaldococcus jannaschii has demonstrated that the nanomechanical properties of one of these domains, the bridge-helix, exert a key regulatory role on the rate of the NAC (nucleotide-addition cycle). Mutations that increase the probability and/or half-life of kink formation in the BH-HC (bridge-helix C-terminal hinge) cause a substantial increase in specific activity ('superactivity'). Fully atomistic molecular dynamics simulations show that kinking of the BH-HC appears to be driven by cation-π interactions and involve amino acid side chains that are exceptionally highly conserved in all prokaryotic and eukaryotic species.


Asunto(s)
Cationes/química , ARN Polimerasas Dirigidas por ADN/química , Methanococcaceae/enzimología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dominio Catalítico/genética , ARN Polimerasas Dirigidas por ADN/genética , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular
10.
BMC Biol ; 8: 134, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21034443

RESUMEN

BACKGROUND: Cellular RNA polymerases (RNAPs) are complex molecular machines that combine catalysis with concerted conformational changes in the active center. Previous work showed that kinking of a hinge region near the C-terminus of the Bridge Helix (BH-H(C)) plays a critical role in controlling the catalytic rate. RESULTS: Here, new evidence for the existence of an additional hinge region in the amino-terminal portion of the Bridge Helix domain (BH-H(N)) is presented. The nanomechanical properties of BH-H(N) emerge as a direct consequence of the highly conserved primary amino acid sequence. Mutations that are predicted to influence its flexibility cause corresponding changes in the rate of the nucleotide addition cycle (NAC). BH-H(N) displays functional properties that are distinct from BH-H(C), suggesting that conformational changes in the Bridge Helix control the NAC via two independent mechanisms. CONCLUSIONS: The properties of two distinct molecular hinges in the Bridge Helix of RNAP determine the functional contribution of this domain to key stages of the NAC by coordinating conformational changes in surrounding domains.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína/genética , Secuencia de Aminoácidos , Secuencia de Bases , Catálisis , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis , Análisis de Secuencia de ADN
11.
Biomolecules ; 11(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201262

RESUMEN

The human transcription factor FOXO3 (a member of the 'forkhead' family of transcription factors) controls a variety of cellular functions that make it a highly relevant target for intervention in anti-cancer and anti-aging therapies. FOXO3 is a mostly intrinsically disordered protein (IDP). Absence of knowledge of its structural properties outside the DNA-binding domain constitutes a considerable obstacle to a better understanding of structure/function relationships. Here, I present extensive molecular dynamics (MD) simulation data based on implicit solvation models of the entire FOXO3/DNA complex, and accelerated MD simulations under explicit solvent conditions of a central region of particular structural interest (FOXO3120-530). A new graphical tool for studying and visualizing the structural diversity of IDPs, the Local Compaction Plot (LCP), is introduced. The simulations confirm the highly disordered nature of FOXO3 and distinguish various degrees of folding propensity. Unexpectedly, two 'linker' regions immediately adjacent to the DNA-binding domain are present in a highly extended conformation. This extended conformation is not due to their amino acid composition, but rather is caused by electrostatic repulsion of the domains connected by the linkers. FOXO3 is thus an IDP present in an unusually extended conformation to facilitate interaction with molecular interaction partners.


Asunto(s)
Proteína Forkhead Box O3/química , Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Humanos , Dominios Proteicos , Electricidad Estática
12.
Front Mol Biosci ; 8: 669314, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34141723

RESUMEN

Nanoarchaea represent a highly diverged archaeal phylum that displays many unusual biological features. The Nanoarchaeum equitans genome encodes a complete set of RNA polymerase (RNAP) subunits and basal factors. Several of the standard motifs in the active center contain radical substitutions that are normally expected to render the polymerase catalytically inactive. Here we show that, despite these unusual features, a RNAP reconstituted from recombinant Nanoarchaeum subunits is transcriptionally active. Using a sparse-matrix high-throughput screening method we identified an atypical stringent requirement for fluoride ions to maximize its activity under in vitro transcription conditions.

13.
Biochem Soc Trans ; 38(2): 428-32, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298196

RESUMEN

RNAPs (RNA polymerases) are complex molecular machines containing structural domains that co-ordinate the movement of nucleic acid and nucleotide substrates through the catalytic site. X-ray images of bacterial, archaeal and eukaryotic RNAPs have provided a wealth of structural detail over the last decade, but many mechanistic features can only be derived indirectly from such structures. We have therefore implemented a robotic high-throughput structure-function experimental system based on the automatic generation and assaying of hundreds of site-directed mutants in the archaeal RNAP from Methanocaldococcus jannaschii. In the present paper, I focus on recent insights obtained from applying this experimental strategy to the bridge-helix domain. Our work demonstrates that the bridge-helix undergoes substantial conformational changes within a narrowly confined region (mjA' Ala(822)-Gln(823)-Ser(824)) during the nucleotide-addition cycle. Naturally occurring radical sequence variations in plant RNAP IV and V enzymes map to this region. In addition, many mutations within this domain cause a substantial increase in the RNAP catalytic activity ('superactivity'), suggesting that the RNAP active site is conformationally constrained.


Asunto(s)
Células/enzimología , ARN Polimerasas Dirigidas por ADN/fisiología , Secuencia de Aminoácidos , Fenómenos Biomecánicos/fisiología , Dominio Catalítico , Células/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Methanococcaceae/enzimología , Methanococcaceae/genética , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Nanoestructuras , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
15.
Nucleic Acids Res ; 36(1): 245-52, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18025041

RESUMEN

The in-depth structure/function analysis of large protein complexes, such as RNA polymerases (RNAPs), requires an experimental platform capable of assembling variants of such enzymes in large numbers in a reproducible manner under defined in vitro conditions. Here we describe a streamlined and integrated protocol for assembling recombinant archaeal RNAPs in a high-throughput 96-well format. All aspects of the procedure including construction of redesigned expression plasmids, development of automated protein extraction/in vitro assembly methods and activity assays were specifically adapted for implementation on robotic platforms. The optimized strategy allows the parallel assembly and activity assay of 96 recombinant RNAPs (including wild-type and mutant variants) with little or no human intervention within 24 h. We demonstrate the high-throughput potential of this system by evaluating the side-chain requirements of a single amino acid position of the RNAP Bridge Helix using saturation mutagenesis.


Asunto(s)
Proteínas Arqueales/genética , ARN Polimerasas Dirigidas por ADN/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Secuencia de Aminoácidos , Archaea/enzimología , Proteínas Arqueales/biosíntesis , Proteínas Arqueales/química , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/biosíntesis , ARN Polimerasas Dirigidas por ADN/química , Vectores Genéticos , Datos de Secuencia Molecular , Mutagénesis , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Robótica
16.
Biomolecules ; 10(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825095

RESUMEN

The human mediator subunit MED25 acts as a coactivator that binds the transcriptional activation domains (TADs) present in various cellular and viral gene-specific transcription factors. Previous studies, including on NMR measurements and site-directed mutagenesis, have only yielded low-resolution models that are difficult to refine further by experimental means. Here, we apply computational molecular dynamics simulations to study the interactions of two different TADs from the human transcription factor ETV5 (ERM) and herpes virus VP16-H1 with MED25. Like other well-studied coactivator-TAD complexes, the interactions of these intrinsically disordered domains with the coactivator surface are temporary and highly dynamic ('fuzzy'). Due to the fact that the MED25 TAD-binding region is organized as an elongated cleft, we specifically asked whether these TADs are capable of binding in either orientation and how this could be achieved structurally and energetically. The binding of both the ETV5 and VP16-TADs in either orientation appears to be possible but occurs in a conformationally distinct manner and utilizes different sets of hydrophobic residues present in the TADs to drive the interactions. We propose that MED25 and at least a subset of human TADs specifically evolved a redundant set of molecular interaction patterns to allow binding to particular coactivators without major prior spatial constraints.


Asunto(s)
Complejo Mediador/metabolismo , Factores de Transcripción/metabolismo , Humanos , Unión Proteica , Dominios Proteicos , Activación Transcripcional
17.
Biomolecules ; 10(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906795

RESUMEN

Mapping the route of nucleoside triphosphate (NTP) entry into the sequestered active site of RNA polymerase (RNAP) has major implications for elucidating the complete nucleotide addition cycle. Constituting a dichotomy that remains to be resolved, two alternatives, direct NTP delivery via the secondary channel (CH2) or selection to downstream sites in the main channel (CH1) prior to catalysis, have been proposed. In this study, accelerated molecular dynamics simulations of freely diffusing NTPs about RNAPII were applied to refine the CH2 model and uncover atomic details on the CH1 model that previously lacked a persuasive structural framework to illustrate its mechanism of action. Diffusion and binding of NTPs to downstream DNA, and the transfer of a preselected NTP to the active site, are simulated for the first time. All-atom simulations further support that CH1 loading is transcription factor IIF (TFIIF) dependent and impacts catalytic isomerization. Altogether, the alternative nucleotide loading systems may allow distinct transcriptional landscapes to be expressed.


Asunto(s)
Nucleótidos/química , Nucleótidos/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Dominio Catalítico , ADN/química , Difusión , Humanos , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Conformación Proteica , ARN/química , Factores de Transcripción TFII/química , Transcripción Genética
18.
Life (Basel) ; 10(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664335

RESUMEN

Many of the proteins involved in key cellular regulatory events contain extensive intrinsically disordered regions that are not readily amenable to conventional structure/function dissection. The oncoprotein c-MYC plays a key role in controlling cell proliferation and apoptosis and more than 70% of the primary sequence is disordered. Computational approaches that shed light on the range of secondary and tertiary structural conformations therefore provide the only realistic chance to study such proteins. Here, we describe the results of several tests of force fields and water models employed in molecular dynamics simulations for the N-terminal 88 amino acids of c-MYC. Comparisons of the simulation data with experimental secondary structure assignments obtained by NMR establish a particular implicit solvation approach as highly congruent. The results provide insights into the structural dynamics of c-MYC1-88, which will be useful for guiding future experimental approaches. The protocols for trajectory analysis described here will be applicable for the analysis of a variety of computational simulations of intrinsically disordered proteins.

19.
Mol Cell Biol ; 25(18): 8344-55, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16135821

RESUMEN

Archaeal RNA polymerases (RNAPs) are recruited to promoters through the joint action of three basal transcription factors: TATA-binding protein, TFB (archaeal homolog of TFIIB), and TFE (archaeal homolog of TFIIE). Our results demonstrate several new insights into the mechanisms of TFB and TFE during the transcription cycle. (i) The N-terminal Zn ribbon of TFB displays a surprising degree of redundancy for the recruitment of RNAP during transcription initiation in the archaeal system. (ii) The B-finger domain of TFB participates in transcription initiation events by stimulating abortive and productive transcription in a recruitment-independent function. TFB thus combines physical recruitment of the RNAP with an active role in influencing the catalytic properties of RNAP during transcription initiation. (iii) TFB mutations are complemented by TFE, thereby demonstrating that both factors act synergistically during transcription initiation. (iv) An additional function of TFE is to dynamically alter the nucleic acid-binding properties of RNAP by stabilizing the initiation complex and destabilizing elongation complexes.


Asunto(s)
Proteínas Arqueales/metabolismo , Methanococcales/genética , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Secuencia de Bases , ADN de Archaea/metabolismo , Methanococcales/metabolismo , Datos de Secuencia Molecular , Mutación , Eliminación de Secuencia , Factor de Transcripción TFIIB/genética , Factores de Transcripción/genética , Zinc/metabolismo
20.
Biochem Soc Symp ; (73): 49-58, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16626286

RESUMEN

The archaeal basal transcriptional machinery consists of TBP (TATA-binding protein), TFB (transcription factor B; a homologue of eukaryotic TFIIB) and an RNA polymerase that is structurally very similar to eukaryotic RNA polymerase II. This constellation of factors is sufficient to assemble specifically on a TATA box-containing promoter and to initiate transcription at a specific start site. We have used this system to study the functional interaction between basal transcription factors and RNA polymerase, with special emphasis on the post-recruitment function of TFB. A bioinformatics analysis of the B-finger of archaeal TFB and eukaryotic TFIIB reveals that this structure undergoes rapid and apparently systematic evolution in archaeal and eukaryotic evolutionary domains. We provide a detailed analysis of these changes and discuss their possible functional implications.


Asunto(s)
Proteínas Arqueales/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Factor de Transcripción TFIIB/metabolismo , Secuencia de Aminoácidos , Animales , Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Secuencia de Bases , ADN/genética , ADN/metabolismo , ADN de Archaea/genética , ADN de Archaea/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Células Eucariotas , Evolución Molecular , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA