Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Syst Biol ; 19(5): e11361, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36919946

RESUMEN

DNA methylation comprises a cumulative record of lifetime exposures superimposed on genetically determined markers. Little is known about methylation dynamics in humans following an acute perturbation, such as infection. We characterized the temporal trajectory of blood epigenetic remodeling in 133 participants in a prospective study of young adults before, during, and after asymptomatic and mildly symptomatic SARS-CoV-2 infection. The differential methylation caused by asymptomatic or mildly symptomatic infections was indistinguishable. While differential gene expression largely returned to baseline levels after the virus became undetectable, some differentially methylated sites persisted for months of follow-up, with a pattern resembling autoimmune or inflammatory disease. We leveraged these responses to construct methylation-based machine learning models that distinguished samples from pre-, during-, and postinfection time periods, and quantitatively predicted the time since infection. The clinical trajectory in the young adults and in a diverse cohort with more severe outcomes was predicted by the similarity of methylation before or early after SARS-CoV-2 infection to the model-defined postinfection state. Unlike the phenomenon of trained immunity, the postacute SARS-CoV-2 epigenetic landscape we identify is antiprotective.


Asunto(s)
COVID-19 , Adulto Joven , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudios Prospectivos , Metilación de ADN/genética , Procesamiento Proteico-Postraduccional
2.
N Engl J Med ; 383(25): 2407-2416, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33176093

RESUMEN

BACKGROUND: The efficacy of public health measures to control the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been well studied in young adults. METHODS: We investigated SARS-CoV-2 infections among U.S. Marine Corps recruits who underwent a 2-week quarantine at home followed by a second supervised 2-week quarantine at a closed college campus that involved mask wearing, social distancing, and daily temperature and symptom monitoring. Study volunteers were tested for SARS-CoV-2 by means of quantitative polymerase-chain-reaction (qPCR) assay of nares swab specimens obtained between the time of arrival and the second day of supervised quarantine and on days 7 and 14. Recruits who did not volunteer for the study underwent qPCR testing only on day 14, at the end of the quarantine period. We performed phylogenetic analysis of viral genomes obtained from infected study volunteers to identify clusters and to assess the epidemiologic features of infections. RESULTS: A total of 1848 recruits volunteered to participate in the study; within 2 days after arrival on campus, 16 (0.9%) tested positive for SARS-CoV-2, 15 of whom were asymptomatic. An additional 35 participants (1.9%) tested positive on day 7 or on day 14. Five of the 51 participants (9.8%) who tested positive at any time had symptoms in the week before a positive qPCR test. Of the recruits who declined to participate in the study, 26 (1.7%) of the 1554 recruits with available qPCR results tested positive on day 14. No SARS-CoV-2 infections were identified through clinical qPCR testing performed as a result of daily symptom monitoring. Analysis of 36 SARS-CoV-2 genomes obtained from 32 participants revealed six transmission clusters among 18 participants. Epidemiologic analysis supported multiple local transmission events, including transmission between roommates and among recruits within the same platoon. CONCLUSIONS: Among Marine Corps recruits, approximately 2% who had previously had negative results for SARS-CoV-2 at the beginning of supervised quarantine, and less than 2% of recruits with unknown previous status, tested positive by day 14. Most recruits who tested positive were asymptomatic, and no infections were detected through daily symptom monitoring. Transmission clusters occurred within platoons. (Funded by the Defense Health Agency and others.).


Asunto(s)
Prueba de COVID-19 , COVID-19/transmisión , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Personal Militar , Cuarentena , SARS-CoV-2/aislamiento & purificación , Infecciones Asintomáticas , COVID-19/diagnóstico , COVID-19/epidemiología , Genoma Viral , Humanos , Masculino , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , SARS-CoV-2/genética , South Carolina/epidemiología , Secuenciación Completa del Genoma , Adulto Joven
3.
J Infect Dis ; 227(1): 18-22, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35892131

RESUMEN

BACKGROUND: The development of memory B cells after asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well understood. METHODS: We compared spike antibody titers, pseudovirus neutralizing antibody titers, and memory B-cell responses among SARS-CoV-2 PCR-positive Marine recruits who either reported asymptomatic or symptomatic infection. RESULTS: Thirty-six asymptomatic participants exhibited similar spike IgG titers, spike IgA titers, and pseudovirus neutralization titers compared to 30 symptomatic participants. Pseudovirus neutralization and spike IgG titers showed significant positive correlations with frequency of memory B cells. CONCLUSIONS: Among young adults, asymptomatic SARS-CoV-2 infection induced antibody and memory B-cell responses comparable to mild symptomatic infection.


Asunto(s)
COVID-19 , Adulto Joven , Humanos , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus
4.
Epidemiology ; 33(6): 797-807, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944149

RESUMEN

BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.


Asunto(s)
COVID-19 , Brotes de Enfermedades , Personal Militar , COVID-19/epidemiología , COVID-19/prevención & control , Brotes de Enfermedades/prevención & control , Femenino , Humanos , Masculino , Personal Militar/estadística & datos numéricos , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Estados Unidos/epidemiología
5.
Emerg Infect Dis ; 27(4): 1188-1192, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33529569

RESUMEN

In a study of US Marine recruits, seroprevalence of severe acute respiratory syndrome coronavirus 2 IgG was 9.0%. Hispanic and non-Hispanic Black participants and participants from states affected earlier in the pandemic had higher seropositivity rates. These results suggest the need for targeted public health strategies among young adults at increased risk for infection.


Asunto(s)
COVID-19 , Salud Militar , Personal Militar/estadística & datos numéricos , Selección de Personal , SARS-CoV-2 , Factores de Edad , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/prevención & control , Prueba Serológica para COVID-19/métodos , Prueba Serológica para COVID-19/estadística & datos numéricos , Estudios Transversales , Demografía , Femenino , Humanos , Masculino , Salud Militar/etnología , Salud Militar/estadística & datos numéricos , Servicios de Salud Militares , Selección de Personal/métodos , Selección de Personal/estadística & datos numéricos , Cuarentena , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Estudios Seroepidemiológicos , Estados Unidos/epidemiología , Adulto Joven
6.
Virol J ; 11: 40, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24576301

RESUMEN

BACKGROUND: Australian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined. METHODS: ABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol. RESULTS: Here we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry. CONCLUSIONS: The predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.


Asunto(s)
Actinas/metabolismo , Clatrina/metabolismo , Endocitosis , Interacciones Huésped-Patógeno , Lyssavirus/fisiología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Proteínas de Unión al GTP rab5/metabolismo , Australia , Línea Celular , Células Epiteliales/virología , Humanos
7.
Curr Res Immunol ; 4: 100064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645658

RESUMEN

This study tested the hypothesis that high frequencies of natural killer (NK) cells are protective against symptomatic SARS-CoV-2 infection. Samples were utilized from the COVID-19 Health Action Response for Marines study, a prospective, observational study of SARS-CoV-2 infection in which participants were enrolled prior to infection and then serially monitored for development of symptomatic or asymptomatic infection. Frequencies and phenotypes of NK cells (CD3-CD14-CD19-CD56+) were assessed by flow cytometry. Individuals that developed asymptomatic infections were found to have higher pre-infection frequencies of total NK cells compared to symptomatic individuals (10.61% [SD 4.5] vs 8.33% [SD 4.6], p = 0.011). Circulating total NK cells decreased over the course of infection, reaching a nadir at 4 weeks, while immature NK cells increased, a finding confirmed by multidimensional reduction analysis. These results indicate that NK cells likely play a key role in controlling the severity of clinical illness in individuals infected with SARS-CoV-2.

8.
EMBO Mol Med ; 15(10): e16394, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37767784

RESUMEN

Infections with rabies virus (RABV) and related lyssaviruses are uniformly fatal once virus accesses the central nervous system (CNS) and causes disease signs. Current immunotherapies are thus focused on the early, pre-symptomatic stage of disease, with the goal of peripheral neutralization of virus to prevent CNS infection. Here, we evaluated the therapeutic efficacy of F11, an anti-lyssavirus human monoclonal antibody (mAb), on established lyssavirus infections. We show that a single dose of F11 limits viral load in the brain and reverses disease signs following infection with a lethal dose of lyssavirus, even when administered after initiation of robust virus replication in the CNS. Importantly, we found that F11-dependent neutralization is not sufficient to protect animals from mortality, and a CD4 T cell-dependent adaptive immune response is required for successful control of infection. F11 significantly changes the spectrum of leukocyte populations in the brain, and the FcRγ-binding function of F11 contributes to therapeutic efficacy. Thus, mAb therapy can drive potent neutralization-independent T cell-mediated effects, even against an established CNS infection by a lethal neurotropic virus.


Asunto(s)
Infecciones del Sistema Nervioso Central , Quirópteros , Lyssavirus , Virus de la Rabia , Rabia , Infecciones por Rhabdoviridae , Animales , Humanos , Infecciones por Rhabdoviridae/tratamiento farmacológico , Infecciones por Rhabdoviridae/prevención & control , Linfocitos T CD4-Positivos , Inmunoterapia , Anticuerpos Monoclonales/uso terapéutico , Rabia/prevención & control
9.
Cell Rep Methods ; 3(2): 100395, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36936082

RESUMEN

Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Empalme Alternativo/genética , Prueba de COVID-19 , ARN , Estudios Prospectivos , Biomarcadores/análisis
10.
PLoS One ; 17(4): e0266691, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35390102

RESUMEN

SARS-CoV-2 T cell responses are associated with COVID-19 recovery, and Class I- and Class II-restricted epitopes have been identified in the spike (S), nucleocapsid (N) and membrane (M) proteins and others. This prospective COVID-19 Health Action Response for Marines (CHARM) study enabled assessment of T cell responses against S, N and M proteins in symptomatic and asymptomatic SARS-CoV-2 infected participants. At enrollment all participants were negative by qPCR; follow-up occurred biweekly and bimonthly for the next 6 weeks. Study participants who tested positive by qPCR SARS-CoV-2 test were enrolled in an immune response sub-study. FluoroSpot interferon-gamma (IFN-γ) and IL2 responses following qPCR-confirmed infection at enrollment (day 0), day 7 and 14 and more than 28 days later were measured using pools of 17mer peptides covering S, N, and M proteins, or CD4+CD8 peptide pools containing predicted epitopes from multiple SARS-CoV-2 antigens. Among 124 asymptomatic and 105 symptomatic participants, SARS-CoV-2 infection generated IFN-γ responses to the S, N and M proteins that persisted longer in asymptomatic cases. IFN-γ responses were significantly (p = 0.001) more frequent to the N pool (51.4%) than the M pool (18.9%) among asymptomatic but not symptomatic subjects. Asymptomatic IFN-γ responders to the CD4+CD8 pool responded more frequently to the S pool (55.6%) and N pool (57.1%), than the M pool (7.1%), but not symptomatic participants. The frequencies of IFN-γ responses to the S and N+M pools peaked 7 days after the positive qPCR test among asymptomatic (S pool: 22.2%; N+M pool: 28.7%) and symptomatic (S pool: 15.3%; N+M pool 21.9%) participants and dropped by >28 days. Magnitudes of post-infection IFN-γ and IL2 responses to the N+M pool were significantly correlated with IFN-γ and IL2 responses to the N and M pools. These data further support the central role of Th1-biased cell mediated immunity IFN-γ and IL2 responses, particularly to the N protein, in controlling COVID-19 symptoms, and justify T cell-based COVID-19 vaccines that include the N and S proteins.


Asunto(s)
COVID-19 , Interferón gamma , Interleucina-2 , Anticuerpos Antivirales , Infecciones Asintomáticas , Linfocitos T CD8-positivos , COVID-19/diagnóstico , COVID-19/inmunología , Vacunas contra la COVID-19 , Epítopos , Humanos , Interferón gamma/inmunología , Interleucina-2/inmunología , Personal Militar , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
11.
Front Immunol ; 13: 821730, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479098

RESUMEN

Young adults infected with SARS-CoV-2 are frequently asymptomatic or develop only mild disease. Because capturing representative mild and asymptomatic cases require active surveillance, they are less characterized than moderate or severe cases of COVID-19. However, a better understanding of SARS-CoV-2 asymptomatic infections might shed light into the immune mechanisms associated with the control of symptoms and protection. To this aim, we have determined the temporal dynamics of the humoral immune response, as well as the serum inflammatory profile, of mild and asymptomatic SARS-CoV-2 infections in a cohort of 172 initially seronegative prospectively studied United States Marine recruits, 149 of whom were subsequently found to be SARS-CoV-2 infected. The participants had blood samples taken, symptoms surveyed and PCR tests for SARS-CoV-2 performed periodically for up to 105 days. We found similar dynamics in the profiles of viral load and in the generation of specific antibody responses in asymptomatic and mild symptomatic participants. A proteomic analysis using an inflammatory panel including 92 analytes revealed a pattern of three temporal waves of inflammatory and immunoregulatory mediators, and a return to baseline for most of the inflammatory markers by 35 days post-infection. We found that 23 analytes were significantly higher in those participants that reported symptoms at the time of the first positive SARS-CoV-2 PCR compared with asymptomatic participants, including mostly chemokines and cytokines associated with inflammatory response or immune activation (i.e., TNF-α, TNF-ß, CXCL10, IL-8). Notably, we detected 7 analytes (IL-17C, MMP-10, FGF-19, FGF-21, FGF-23, CXCL5 and CCL23) that were higher in asymptomatic participants than in participants with symptoms; these are known to be involved in tissue repair and may be related to the control of symptoms. Overall, we found a serum proteomic signature that differentiates asymptomatic and mild symptomatic infections in young adults, including potential targets for developing new therapies and prognostic tests.


Asunto(s)
COVID-19 , Factores de Crecimiento de Fibroblastos , Humanos , Interleucina-17 , Metaloproteinasa 10 de la Matriz , Proteómica , SARS-CoV-2
12.
Cell Syst ; 13(11): 924-931.e4, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36323307

RESUMEN

Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of antiviral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infection. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in response to SARS-CoV-2 infection. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
COVID-19 , Inmunidad Innata , Caracteres Sexuales , Femenino , Humanos , Masculino , Adulto Joven , COVID-19/inmunología , Interferones , Proteómica , SARS-CoV-2
13.
Viruses ; 13(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804519

RESUMEN

Australian bat lyssavirus (ABLV) is a rhabdovirus that circulates in four species of pteropid bats (ABLVp) and the yellow-bellied sheath-tailed bat (ABLVs) in mainland Australia. In the three confirmed human cases of ABLV, rabies illness preceded fatality. As with rabies virus (RABV), post-exposure prophylaxis (PEP) for potential ABLV infections consists of wound cleansing, administration of the rabies vaccine and injection of rabies immunoglobulin (RIG) proximal to the wound. Despite the efficacy of PEP, the inaccessibility of human RIG (HRIG) in the developing world and the high immunogenicity of equine RIG (ERIG) has led to consideration of human monoclonal antibodies (hmAbs) as a passive immunization option that offers enhanced safety and specificity. Using a recombinant vesicular stomatitis virus (rVSV) expressing the glycoprotein (G) protein of ABLVs and phage display, we identified two hmAbs, A6 and F11, which completely neutralize ABLVs/ABLVp, and RABV at concentrations ranging from 0.39 and 6.25 µg/mL and 0.19 and 0.39 µg/mL respectively. A6 and F11 recognize overlapping epitopes in the lyssavirus G protein, effectively neutralizing phylogroup 1 lyssaviruses, while having little effect on phylogroup 2 and non-grouped diverse lyssaviruses. These results suggest that A6 and F11 could be effective therapeutic and diagnostic tools for phylogroup 1 lyssavirus infections.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Reacciones Cruzadas/inmunología , Lyssavirus/clasificación , Lyssavirus/inmunología , Filogenia , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Australia , Mordeduras y Picaduras , Técnicas de Visualización de Superficie Celular , Quirópteros/virología , Epítopos/inmunología , Células HEK293 , Caballos , Humanos , Lyssavirus/genética , Pruebas de Neutralización , Profilaxis Posexposición , Rabia/prevención & control , Vacunas Antirrábicas/inmunología , Virus de la Rabia/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/terapia , Vesiculovirus/genética
14.
Pathogens ; 10(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34959544

RESUMEN

We used epidemiologic and viral genetic information to identify a case of likely reinfection in an otherwise healthy, young Marine recruit enrolled in the prospective, longitudinal COVID-19 Health Action Response for Marines (CHARM) study, and we paired these findings with serological studies. This participant had a positive RT-PCR to SARS-CoV-2 upon routine sampling on study day 7, although he was asymptomatic at that time. He cleared the infection within seven days. On study day 46, he had developed symptoms consistent with COVID-19 and tested positive by RT-PCR for SARS-CoV-2 again. Viral whole genome sequencing was conducted from nares swabs at multiple time points. The day 7 sample was determined to be lineage B.1.340, whereas both the day 46 and day 49 samples were B.1.1. The first positive result for anti-SARS-CoV-2 IgM serology was collected on day 49 and for IgG on day 91. This case appears most consistent with a reinfection event. Our investigation into this case is unique in that we compared sequence data from more than just paired specimens, and we also assayed for immune response after both the initial infection and the later reinfection. These data demonstrate that individuals who have experienced an infection with SARS-CoV-2 may fail to generate effective or long-lasting immunity, similar to endemic human beta coronaviruses.

15.
Lancet Respir Med ; 9(7): 712-720, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33865504

RESUMEN

BACKGROUND: Whether young adults who are infected with SARS-CoV-2 are at risk of subsequent infection is uncertain. We investigated the risk of subsequent SARS-CoV-2 infection among young adults seropositive for a previous infection. METHODS: This analysis was performed as part of the prospective COVID-19 Health Action Response for Marines study (CHARM). CHARM included predominantly male US Marine recruits, aged 18-20 years, following a 2-week unsupervised quarantine at home. After the home quarantine period, upon arrival at a Marine-supervised 2-week quarantine facility (college campus or hotel), participants were enrolled and were assessed for baseline SARS-CoV-2 IgG seropositivity, defined as a dilution of 1:150 or more on receptor-binding domain and full-length spike protein ELISA. Participants also completed a questionnaire consisting of demographic information, risk factors, reporting of 14 specific COVID-19-related symptoms or any other unspecified symptom, and brief medical history. SARS-CoV-2 infection was assessed by PCR at weeks 0, 1, and 2 of quarantine and participants completed a follow-up questionnaire, which included questions about the same COVID-19-related symptoms since the last study visit. Participants were excluded at this stage if they had a positive PCR test during quarantine. Participants who had three negative swab PCR results during quarantine and a baseline serum serology test at the beginning of the supervised quarantine that identified them as seronegative or seropositive for SARS-CoV-2 then went on to basic training at Marine Corps Recruit Depot-Parris Island. Three PCR tests were done at weeks 2, 4, and 6 in both seropositive and seronegative groups, along with the follow-up symptom questionnaire and baseline neutralising antibody titres on all subsequently infected seropositive and selected seropositive uninfected participants (prospective study period). FINDINGS: Between May 11, 2020, and Nov 2, 2020, we enrolled 3249 participants, of whom 3168 (98%) continued into the 2-week quarantine period. 3076 (95%) participants, 2825 (92%) of whom were men, were then followed up during the prospective study period after quarantine for 6 weeks. Among 189 seropositive participants, 19 (10%) had at least one positive PCR test for SARS-CoV-2 during the 6-week follow-up (1·1 cases per person-year). In contrast, 1079 (48%) of 2247 seronegative participants tested positive (6·2 cases per person-year). The incidence rate ratio was 0·18 (95% CI 0·11-0·28; p<0·001). Among seropositive recruits, infection was more likely with lower baseline full-length spike protein IgG titres than in those with higher baseline full-length spike protein IgG titres (hazard ratio 0·45 [95% CI 0·32-0·65]; p<0·001). Infected seropositive participants had viral loads that were about 10-times lower than those of infected seronegative participants (ORF1ab gene cycle threshold difference 3·95 [95% CI 1·23-6·67]; p=0·004). Among seropositive participants, baseline neutralising titres were detected in 45 (83%) of 54 uninfected and in six (32%) of 19 infected participants during the 6 weeks of observation (ID50 difference p<0·0001). INTERPRETATION: Seropositive young adults had about one-fifth the risk of subsequent infection compared with seronegative individuals. Although antibodies induced by initial infection are largely protective, they do not guarantee effective SARS-CoV-2 neutralisation activity or immunity against subsequent infection. These findings might be relevant for optimisation of mass vaccination strategies. FUNDING: Defense Health Agency and Defense Advanced Research Projects Agency.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/epidemiología , SARS-CoV-2/inmunología , Adolescente , COVID-19/diagnóstico , Prueba Serológica para COVID-19 , Estudios de Cohortes , Femenino , Humanos , Masculino , Estudios Prospectivos , Cuarentena , Medición de Riesgo , Adulto Joven
16.
Front Immunol ; 12: 681586, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177926

RESUMEN

We investigated serological responses following a SARS-CoV-2 outbreak in spring 2020 on a US Marine recruit training base. 147 participants that were isolated during an outbreak of respiratory illness were enrolled in this study, with visits approximately 6 and 10 weeks post-outbreak (PO). This cohort is comprised of young healthy adults, ages 18-26, with a high rate of asymptomatic infection or mild symptoms, and therefore differs from previously reported longitudinal studies on humoral responses to SARS-CoV-2, which often focus on more diverse age populations and worse clinical presentation. 80.9% (119/147) of the participants presented with circulating IgG antibodies against SARS-CoV-2 spike (S) receptor-binding domain (RBD) at 6 weeks PO, of whom 97.3% (111/114) remained positive, with significantly decreased levels, at 10 weeks PO. Neutralizing activity was detected in all sera from SARS-CoV-2 IgG positive participants tested (n=38) at 6 and 10 weeks PO, without significant loss between time points. IgG and IgA antibodies against SARS-CoV-2 RBD, S1, S2, and the nucleocapsid (N) protein, as well neutralization activity, were generally comparable between those participants that had asymptomatic infection or mild disease. A multiplex assay including S proteins from SARS-CoV-2 and related zoonotic and human endemic betacoronaviruses revealed a positive correlation for polyclonal cross-reactivity to S after SARS-CoV-2 infection. Overall, young adults that experienced asymptomatic or mild SARS-CoV-2 infection developed comparable humoral responses, with no decrease in neutralizing activity at least up to 10 weeks after infection.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , COVID-19/inmunología , Personal Militar , SARS-CoV-2/fisiología , Adolescente , Adulto , Formación de Anticuerpos , Enfermedades Asintomáticas , Estudios de Cohortes , Brotes de Enfermedades , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Estados Unidos/epidemiología , Adulto Joven
17.
J Virol Methods ; 281: 113882, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32407866

RESUMEN

Traditional mouse models of lyssavirus pathogenesis rely on euthanizing large groups of animals at various time points post-infection, processing infected tissues, and performing histological and molecular analyses to determine anatomical sites of infection. While powerful by some measures, this approach is limited by the inability to monitor disease progression in the same mice over time. In this study, we established a novel non-invasive mouse model of lyssavirus pathogenesis, which consists of longitudinal imaging of a luciferase-expressing Australian bat lyssavirus (ABLV) reporter virus. In vivo bioluminescence imaging (BLI) in mice revealed viral spread from a peripheral site of inoculation into the central nervous system (CNS), with kinetically and spatially distinct foci of replication in the footpad, spinal cord, and hindbrain. Detection of virus within the CNS was associated with onset of clinical disease. Quantification of virus-derived luminescent signal in the brain was found to be a reliable measure of viral replication, when compared to traditional molecular methods. Furthermore, we demonstrate that in vivo imaging of ABLV infection is not restricted to the use of albino strains of mice, but rather strong BLI signal output can be achieved by shaving the hair from the heads and spines of pigmented strains, such as C57BL/6. Overall, our data show that in vivo BLI can be used to rapidly and non-invasively identify sites of lyssavirus replication and to semi-quantitatively determine viral load without the need to sacrifice mice at multiple time points.


Asunto(s)
Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Lyssavirus/patogenicidad , Infecciones por Rhabdoviridae/virología , Animales , Encéfalo/virología , Línea Celular , Femenino , Células HEK293 , Humanos , Estudios Longitudinales , Luciferasas/genética , Mediciones Luminiscentes , Lyssavirus/enzimología , Lyssavirus/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Molecular , Infecciones por Rhabdoviridae/inmunología , Carga Viral
18.
Viruses ; 11(3)2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875748

RESUMEN

Bats are increasingly implicated as hosts of highly pathogenic viruses. The underlying virus⁻host interactions and cellular mechanisms that promote co-existence remain ill-defined, but physiological traits such as flight and longevity are proposed to drive these adaptations. Autophagy is a cellular homeostatic process that regulates ageing, metabolism, and intrinsic immune defense. We quantified basal and stimulated autophagic responses in black flying fox cells, and demonstrated that although black flying fox cells are susceptible to Australian bat lyssavirus (ABLV) infection, viral replication is dampened in these bat cells. Black flying fox cells tolerated prolonged ABLV infection with less cell death relative to comparable human cells, suggesting post-entry mechanisms interference with virus replication. An elevated basal autophagic level was observed and autophagy was induced in response to high virus doses. Pharmacological stimulation of the autophagy pathway reduced virus replication, indicating autophagy acts as an anti-viral mechanism. Enhancement of basal and virus-induced autophagy in bat cells connects related reports that long-lived species possess homeostatic processes that dampen oxidative stress and macromolecule damage. Exemplifying the potential that evolved cellular homeostatic adaptations like autophagy may secondarily act as anti-viral mechanisms, enabling bats to serve as natural hosts to an assortment of pathogenic viruses. Furthermore, our data suggest autophagy-inducing drugs may provide a novel therapeutic strategy for combating lyssavirus infection.


Asunto(s)
Autofagia , Quirópteros/virología , Interacciones Microbiota-Huesped , Lyssavirus/fisiología , Replicación Viral , Animales , Encéfalo/citología , Encéfalo/virología , Células Cultivadas , Riñón/citología , Riñón/virología
19.
Vaccine ; 34(30): 3525-34, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27154393

RESUMEN

Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.


Asunto(s)
Virus Hendra , Infecciones por Henipavirus/prevención & control , Virus Nipah , Vacunación/veterinaria , Vacunas Virales/uso terapéutico , Animales , Quirópteros , Infecciones por Henipavirus/veterinaria , Caballos , Humanos , Inmunización Pasiva , Porcinos , Zoonosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA