Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 19(4): 625-633, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36168911

RESUMEN

Small water droplets or particles located at an oil meniscus typically climb the meniscus due to unbalanced capillary forces. Here, we introduce a size-dependent reversal of this meniscus-climbing behavior, where upon cooling of the underlying substrate, droplets of different sizes concurrently ascend and descend the meniscus. We show that microscopic Marangoni convection cells within the oil meniscus are responsible for this phenomenon. While dynamics of relatively larger water microdroplets are still dominated by unbalanced capillary forces and hence ascend the meniscus, smaller droplets are carried by the surface flow and consequently descend the meniscus. We further demonstrate that the magnitude and direction of the convection cells depend on the meniscus geometry and the substrate temperature and introduce a modified Marangoni number that well predicts their strength. Our findings provide a new approach to manipulating droplets on a liquid meniscus that could have applications in material self-assembly, biological sensing and testing, or phase change heat transfer.

2.
Langmuir ; 37(44): 12790-12801, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34699236

RESUMEN

Lubricant-infused surfaces (LISs) can promote stable dropwise condensation and improve heat transfer rates due to a low nucleation free-energy barrier and high droplet mobility. Recent studies showed that oil menisci surrounding condensate microdroplets form distinct oil-rich and oil-poor regions. These topographical differences in the oil surface cause water microdroplets to rigorously self-propel long distances, continuously redistributing the oil film and potentially refreshing the surface for re-nucleation. However, the dynamic interplay between oil film redistribution, microdroplet self-propulsion, and droplet nucleation and growth is not yet understood. Using high-speed microscopy, we reveal that during water condensation on LISs, the smallest visible droplets (diameter: ∼1 µm, qualitatively representing nucleation) predominantly emerge in oil-poor regions due to a lower nucleation free-energy barrier. Considering the significant heat transfer performance of microdroplets (<10 µm) and transient characteristic of microdroplet movement, we compare the apparent nucleation rate density and water collection rate for LISs with oils of different viscosities and a solid hydrophobic surface at a wide range of subcooling temperatures. Generally, the lowest lubricant viscosity leads to the highest nucleation rate density. We characterize the length and frequency of microdroplet movement and attribute the nucleation enhancement primarily to higher droplet mobility and surface refreshing frequency. Interestingly and unexpectedly, hydrophobic surfaces outperform high-viscosity LISs at high subcooling temperatures but are generally inferior to any of the tested LISs at low temperature differences. To explain the observed nonlinearity between LISs and the solid hydrophobic surface, we introduce two dominant regimes that influence the condensation efficiency: mobility-limited and coalescence-limited. We compare these regimes based on droplet growth rates and water collection rates on the different surfaces. Our findings advance the understanding of dynamic water-lubricant interactions and provide new design rationales for choosing surfaces for enhanced dropwise condensation and water collection efficiencies.

3.
Langmuir ; 35(52): 17185-17192, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31809043

RESUMEN

This paper presents an experimental study on thermal transport to single water droplets evaporating on heated biphobic surfaces consisting of a superhydrophobic matrix with a circular hydrophobic pattern with strong contact line pinning. A single water droplet of 8 µL volume is placed on a preheated surface and allowed to evaporate in an open laboratory environment. We investigate the influence of substrate orientation (horizontal and vertical) on evaporation dynamics. Using optical and infrared imaging, we report droplet fluid dynamics and heat transfer characteristics of the evaporating droplet. Overall, evaporation is more efficient on the vertical surface, exhibiting higher total heat transfer rates and up to 10% shorter evaporation times. Counterintuitively, on the vertical surface, the substrate-droplet interfacial heat flux was higher near the lower contact line than in the upper region, despite a high contact angle and an expected wedge effect at the bottom. At the same time, the temperature is colder in the lower part of the droplet. We attribute this apparent anomaly to the competition between sensible heating and evaporation, and a modified convective flow signature (both within the droplet and the gas phase) compared to a horizontal surface. We also show that the thermal signature becomes uniform once the contact angles at the upper and lower contact lines become equal toward the end of the evaporation process. Insights from this work can guide the design of spray cooling devices or be used to alter particle deposition patterns during evaporation-based fabrication techniques and ink-jet printing.

4.
Soft Matter ; 15(24): 4808-4817, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31089647

RESUMEN

Water vapor condensation is common in nature and widely used in industrial applications, including water harvesting, power generation, and desalination. As compared to traditional filmwise condensation, dropwise condensation on lubricant-infused surfaces (LIS) can lead to an order-of-magnitude increase in heat transfer rates. Small droplets (D ≤ 100 µm) account for nearly 85% of the total heat transfer and droplet sweeping plays a crucial role in clearing nucleation sites, allowing for frequent re-nucleation. Here, we focus on the dynamic interplay of microdroplets with the thin lubricant film during water vapor condensation on LIS. Coupling high-speed imaging, optical microscopy, and interferometry, we show that the initially uniform lubricant film re-distributes during condensation. Governed by lubricant height gradients, microdroplets as small as 2 µm in diameter undergo rigorous and gravity-independent self-propulsion, travelling distances multiples of their diameters at velocities up to 1100 µm s-1. Although macroscopically the movement appears to be random, we show that on a microscopic level capillary attraction due to asymmetrical lubricant menisci causes this gravity-independent droplet motion. Based on a lateral force balance analysis, we quantitatively find that the sliding velocity initially increases during movement, but decreases sharply at shorter inter-droplet spacing. The maximum sliding velocity is inversely proportional to the oil viscosity and is strongly dependent of the droplet size, which is in excellent agreement with the experimental observations. This novel and non-traditional droplet movement is expected to significantly enhance the sweeping efficiency during dropwise condensation, leading to higher nucleation and heat transfer rates.

5.
Sci Rep ; 14(1): 16979, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043838

RESUMEN

Thermal regulators are devices that can adopt either the role of a thermal insulator or a thermal conductor, depending on the thermal input conditions, and play an increasingly important role in thermal management systems. In this study, we developed and tested a new passive thermal regulator design that operates around room temperature and achieves high switching ratios. Our regulator is structurally integer, scalable, orientation-independent, resistant to vibration, and can be easily integrated into existing thermal management solutions. The working principle of the passive regulator is simple yet effective, whereby an aluminum plug attached to a bimetallic strip enters and exists a wedge-shaped gap between two conductors. We demonstrate a switching ratio of ≈ 50 ( - 8 + 34 ) :1 for a fully packaged prototype (≈ 320 (± 200):1 for a non-packaged regulator) operated in the open laboratory environment. Through geometric optimization using numerical simulations, we show that a switching ratio of ≈ 100 ( - 15 + 18 ) :1 can be easily obtained, which can be further increased by increasing the cross-sectional area of the input conductor, hence increasing the ON-state heat transfer rate. The OFF-state thermal performance is much less sensitive to the size of the conductor, making the device highly scalable.

6.
Lab Chip ; 21(13): 2534-2543, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-33998632

RESUMEN

Controlled trapping of cells and microorganisms using substrate acoustic waves (SAWs; conventionally termed surface acoustic waves) has proven useful in numerous biological and biomedical applications owing to the label- and contact-free nature of acoustic confinement. However, excessive heating due to vibration damping and other system losses potentially compromises the biocompatibility of the SAW technique. Herein, we investigate the thermal biocompatibility of polydimethylsiloxane (PDMS)-based SAW and glass-based SAW [that supports a bulk acoustic wave (BAW) in the fluid domain] devices operating at different frequencies and applied voltages. First, we use infrared thermography to produce heat maps of regions of interest (ROI) within the aperture of the SAW transducers for PDMS- and glass-based devices. Motile Chlamydomonas reinhardtii algae cells are then used to test the trapping performance and biocompatibility of these devices. At low input power, the PDMS-based SAW system cannot generate a large enough acoustic trapping force to hold swimming C. reinhardtii cells. At high input power, the temperature of this device rises rapidly, damaging (and possibly killing) the cells. The glass-based SAW/BAW hybrid system, on the other hand, can not only trap swimming C. reinhardtii at low input power, but also exhibits better thermal biocompatibility than the PDMS-based SAW system at high input power. Thus, a glass-based SAW/BAW device creates strong acoustic trapping forces in a biocompatible environment, providing a new solution to safely trap active microswimmers for research involving motile cells and microorganisms.


Asunto(s)
Acústica , Sonido , Fenómenos Mecánicos , Transductores , Vibración
7.
BMJ Open ; 11(9): e045557, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475144

RESUMEN

OBJECTIVE: The COVID-19 pandemic has precipitated widespread shortages of filtering facepiece respirators (FFRs) and the creation and sharing of proposed substitutes (novel designs, repurposed materials) with limited testing against regulatory standards. We aimed to categorically test the efficacy and fit of potential N95 respirator substitutes using protocols that can be replicated in university laboratories. SETTING: Academic medical centre with occupational health-supervised fit testing along with laboratory studies. PARTICIPANTS: Seven adult volunteers who passed quantitative fit testing for small-sized (n=2) and regular-sized (n=5) commercial N95 respirators. METHODS: Five open-source potential N95 respirator substitutes were evaluated and compared with commercial National Institute for Occupational Safety and Health (NIOSH)-approved N95 respirators as controls. Fit testing using the 7-minute standardised Occupational Safety and Health Administration fit test was performed. In addition, protocols that can be performed in university laboratories for materials testing (filtration efficiency, air resistance and fluid resistance) were developed to evaluate alternate filtration materials. RESULTS: Among five open-source, improvised substitutes evaluated in this study, only one (which included a commercial elastomeric mask and commercial HEPA filter) passed a standard quantitative fit test. The four alternative materials evaluated for filtration efficiency (67%-89%) failed to meet the 95% threshold at a face velocity (7.6 cm/s) equivalent to that of a NIOSH particle filtration test for the control N95 FFR. In addition, for all but one material, the small surface area of two 3D-printed substitutes resulted in air resistance that was above the maximum in the NIOSH standard. CONCLUSIONS: Testing protocols such as those described here are essential to evaluate proposed improvised respiratory protection substitutes, and our testing platform could be replicated by teams with similar cross-disciplinary research capacity. Healthcare professionals should be cautious of claims associated with improvised respirators when suggested as FFR substitutes.


Asunto(s)
COVID-19 , Exposición Profesional , Dispositivos de Protección Respiratoria , Adulto , Diseño de Equipo , Humanos , Respiradores N95 , Pandemias/prevención & control , SARS-CoV-2 , Estados Unidos , Ventiladores Mecánicos
8.
Sci Rep ; 6: 30328, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27461899

RESUMEN

Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5-7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics.

9.
J Colloid Interface Sci ; 453: 177-185, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25985421

RESUMEN

HYPOTHESIS: Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. EXPERIMENTS: The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. FINDINGS: Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA