Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 16: 135, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25925016

RESUMEN

BACKGROUND: The interpretation of the results from genome-scale experiments is a challenging and important problem in contemporary biomedical research. Biological networks that integrate experimental results with existing knowledge from biomedical databases and published literature can provide a rich resource and powerful basis for hypothesizing about mechanistic explanations for observed gene-phenotype relationships. However, the size and density of such networks often impede their efficient exploration and understanding. RESULTS: We introduce a visual analytics approach that integrates interactive filtering of dense networks based on degree-of-interest functions with attribute-based layouts of the resulting subnetworks. The comparison of multiple subnetworks representing different analysis facets is facilitated through an interactive super-network that integrates brushing-and-linking techniques for highlighting components across networks. An implementation is freely available as a Cytoscape app. CONCLUSIONS: We demonstrate the utility of our approach through two case studies using a dataset that combines clinical data with high-throughput data for studying the effect of ß-blocker treatment on heart failure patients. Furthermore, we discuss our team-based iterative design and development process as well as the limitations and generalizability of our approach.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Colesterol/metabolismo , Gráficos por Computador , Bases de Datos Factuales , Redes Reguladoras de Genes , Insuficiencia Cardíaca/genética , Programas Informáticos , Proteínas de Transferencia de Ésteres de Colesterol/genética , Minería de Datos , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38349829

RESUMEN

Seasonal-trend decomposition based on loess (STL) is a powerful tool to explore time series data visually. In this paper, we present an extension of STL to uncertain data, named uncertainty-aware STL (UASTL). Our method propagates multivariate Gaussian distributions mathematically exactly through the entire analysis and visualization pipeline. Thereby, stochastic quantities shared between the components of the decomposition are preserved. Moreover, we present application scenarios with uncertainty modeling based on Gaussian processes, e.g., data with uncertain areas or missing values. Besides these mathematical results and modeling aspects, we introduce visualization techniques that address the challenges of uncertainty visualization and the problem of visualizing highly correlated components of a decomposition. The global uncertainty propagation enables the time series visualization with STL-consistent samples, the exploration of correlation between and within decomposition's components, and the analysis of the impact of varying uncertainty. Finally, we show the usefulness of UASTL and the importance of uncertainty visualization with several examples. Thereby, a comparison with conventional STL is performed.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38648151

RESUMEN

Areas of interest (AOIs) are well-established means of providing semantic information for visualizing, analyzing, and classifying gaze data. However, the usual manual annotation of AOIs is time-consuming and further impaired by ambiguities in label assignments. To address these issues, we present an interactive labeling approach that combines visualization, machine learning, and user-centered explainable annotation. Our system provides uncertainty-aware visualization to build trust in classification with an increasing number of annotated examples. It combines specifically designed EyeFlower glyphs, dimensionality reduction, and selection and exploration techniques in an integrated workflow. The approach is versatile and hardware-agnostic, supporting video stimuli from stationary and unconstrained mobile eye tracking alike. We conducted an expert review to assess labeling strategies and trust building.

4.
IEEE Trans Vis Comput Graph ; 30(6): 2929-2941, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625781

RESUMEN

Scatter plots are popular for displaying 2D data, but in practice, many data sets have more than two dimensions. For the analysis of such multivariate data, it is often necessary to switch between scatter plots of different dimension pairs, e.g., in a scatter plot matrix (SPLOM). Alternative approaches include a "grand tour" for an overview of the entire data set or creating artificial axes from dimensionality reduction (DR). A cross-cutting concern in all techniques is the ability of viewers to find correspondence between data points in different views. Previous work proposed animations to preserve the mental map between view changes and to trace points as well as clusters between scatter plots of the same underlying data set. In this article, we evaluate a variety of spline- and rotation-based view transitions in a crowdsourced user study focusing on ecological validity. Using the study results, we assess each animation's suitability for tracing points and clusters across view changes. We evaluate whether the order of horizontal and vertical rotation is relevant for task accuracy. The results show that rotations with an orthographic camera or staged expansion of a depth axis significantly outperform all other animation techniques for the traceability of individual points. Further, we provide a ranking of the animated transition techniques for traceability of individual points. However, we could not find any significant differences for the traceability of clusters. Furthermore, we identified differences by animation direction that could guide further studies to determine potential confounds for these differences. We publish the study data for reuse and provide the animation framework as a D3.js plug-in.

5.
BMC Bioinformatics ; 14 Suppl 19: S2, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24564335

RESUMEN

BACKGROUND: Mathematical models are nowadays widely used to describe biochemical reaction networks. One of the main reasons for this is that models facilitate the integration of a multitude of different data and data types using parameter estimation. Thereby, models allow for a holistic understanding of biological processes. However, due to measurement noise and the limited amount of data, uncertainties in the model parameters should be considered when conclusions are drawn from estimated model attributes, such as reaction fluxes or transient dynamics of biological species. METHODS AND RESULTS: We developed the visual analytics system iVUN that supports uncertainty-aware analysis of static and dynamic attributes of biochemical reaction networks modeled by ordinary differential equations. The multivariate graph of the network is visualized as a node-link diagram, and statistics of the attributes are mapped to the color of nodes and links of the graph. In addition, the graph view is linked with several views, such as line plots, scatter plots, and correlation matrices, to support locating uncertainties and the analysis of their time dependencies. As demonstration, we use iVUN to quantitatively analyze the dynamics of a model for Epo-induced JAK2/STAT5 signaling. CONCLUSION: Our case study showed that iVUN can be used to perform an in-depth study of biochemical reaction networks, including attribute uncertainties, correlations between these attributes and their uncertainties as well as the attribute dynamics. In particular, the linking of different visualization options turned out to be highly beneficial for the complex analysis tasks that come with the biological systems as presented here.


Asunto(s)
Modelos Biológicos , Modelos Químicos , Incertidumbre , Biología Computacional/métodos , Gráficos por Computador , Redes y Vías Metabólicas , Transducción de Señal
6.
IEEE Trans Vis Comput Graph ; 29(1): 23-32, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36191104

RESUMEN

We present an extension of multidimensional scaling (MDS) to uncertain data, facilitating uncertainty visualization of multidimensional data. Our approach uses local projection operators that map high-dimensional random vectors to low-dimensional space to formulate a generalized stress. In this way, our generic model supports arbitrary distributions and various stress types. We use our uncertainty-aware multidimensional scaling (UAMDS) concept to derive a formulation for the case of normally distributed random vectors and a squared stress. The resulting minimization problem is numerically solved via gradient descent. We complement UAMDS by additional visualization techniques that address the sensitivity and trustworthiness of dimensionality reduction under uncertainty. With several examples, we demonstrate the usefulness of our approach and the importance of uncertainty-aware techniques.

7.
IEEE Trans Vis Comput Graph ; 29(1): 182-192, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36170398

RESUMEN

Frequency-based decomposition of time series data is used in many visualization applications. Most of these decomposition methods (such as Fourier transform or singular spectrum analysis) only provide interaction via pre- and post-processing, but no means to influence the core algorithm. A method that also belongs to this class is Dynamic Mode Decomposition (DMD), a spectral decomposition method that extracts spatio-temporal patterns from data. In this paper, we incorporate frequency-based constraints into DMD for an adaptive decomposition that leads to user-controllable visualizations, allowing analysts to include their knowledge into the process. To accomplish this, we derive an equivalent reformulation of DMD that implicitly provides access to the eigenvalues (and therefore to the frequencies) identified by DMD. By utilizing a constrained minimization problem customized to DMD, we can guarantee the existence of desired frequencies by minimal changes to DMD. We complement this core approach by additional techniques for constrained DMD to facilitate explorative visualization and investigation of time series data. With several examples, we demonstrate the usefulness of constrained DMD and compare it to conventional frequency-based decomposition methods.

8.
IEEE Trans Vis Comput Graph ; 29(1): 278-287, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36166524

RESUMEN

We introduce relaxed dot plots as an improvement of nonlinear dot plots for unit visualization. Our plots produce more faithful data representations and reduce moiré effects. Their contour is based on a customized kernel frequency estimation to match the shape of the distribution of underlying data values. Previous nonlinear layouts introduce column-centric nonlinear scaling of dot diameters for visualization of high-dynamic-range data with high peaks. We provide a mathematical approach to convert that column-centric scaling to our smooth envelope shape. This formalism allows us to use linear, root, and logarithmic scaling to find ideal dot sizes. Our method iteratively relaxes the dot layout for more correct and aesthetically pleasing results. To achieve this, we modified Lloyd's algorithm with additional constraints and heuristics. We evaluate the layouts of relaxed dot plots against a previously existing nonlinear variant and show that our algorithm produces less error regarding the underlying data while establishing the blue noise property that works against moiré effects. Further, we analyze the readability of our relaxed plots in three crowd-sourced experiments. The results indicate that our proposed technique surpasses traditional dot plots.

9.
IEEE Trans Vis Comput Graph ; 29(1): 896-906, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36191101

RESUMEN

This work investigates and compares the performance of node-link diagrams, adjacency matrices, and bipartite layouts for visualizing networks. In a crowd-sourced user study ( n=150), we measure the task accuracy and completion time of the three representations for different network classes and properties. In contrast to the literature, which covers mostly topology-based tasks (e.g., path finding) in small datasets, we mainly focus on overview tasks for large and directed networks. We consider three overview tasks on networks with 500 nodes: (T1) network class identification, (T2) cluster detection, and (T3) network density estimation, and two detailed tasks: (T4) node in-degree vs. out-degree and (T5) representation mapping, on networks with 50 and 20 nodes, respectively. Our results show that bipartite layouts are beneficial for revealing the overall network structure, while adjacency matrices are most reliable across the different tasks.

10.
BMC Bioinformatics ; 13 Suppl 8: S2, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22607364

RESUMEN

In the search for single-nucleotide polymorphisms which influence the observable phenotype, genome wide association studies have become an important technique for the identification of associations between genotype and phenotype of a diverse set of sequence-based data. We present a methodology for the visual assessment of single-nucleotide polymorphisms using interactive hierarchical aggregation techniques combined with methods known from traditional sequence browsers and cluster heatmaps. Our tool, the interactive Hierarchical Aggregation Table (iHAT), facilitates the visualization of multiple sequence alignments, associated metadata, and hierarchical clusterings. Different color maps and aggregation strategies as well as filtering options support the user in finding correlations between sequences and metadata. Similar to other visualizations such as parallel coordinates or heatmaps, iHAT relies on the human pattern-recognition ability for spotting patterns that might indicate correlation or anticorrelation. We demonstrate iHAT using artificial and real-world datasets for DNA and protein association studies as well as expression Quantitative Trait Locus data.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Programas Informáticos , Análisis por Conglomerados , Genotipo , Humanos
11.
Biol Lett ; 8(1): 6-9, 2012 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21865243

RESUMEN

The interdisciplinary workshop 'Analysis and Visualization of Moving Objects' was held at the Lorentz Centre in Leiden, The Netherlands, from 27 June to 1 July 2011. It brought together international specialists from ecology, computer science and geographical information science actively involved in the exploration, visualization and analysis of moving objects, such as marine reptiles, mammals, birds, storms, ships, cars and pedestrians. The aim was to share expertise, methodologies, data and common questions between different fields, and to work towards making significant advances in movement research. A data challenge based on GPS tracking of lesser black-backed gulls (Larus fuscus) was used to stimulate initial discussions, cross-fertilization between research groups and to serve as an initial focus for activities during the workshop.


Asunto(s)
Congresos como Asunto , Ecología/métodos , Comunicación Interdisciplinaria , Movimiento/fisiología , Animales , Charadriiformes/fisiología , Gráficos por Computador , Ecología/tendencias , Sistemas de Información Geográfica , Países Bajos
12.
Front Bioinform ; 2: 793819, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304261

RESUMEN

This paper provides an overview of uncertainty visualization in general, along with specific examples of applications in bioinformatics. Starting from a processing and interaction pipeline of visualization, components are discussed that are relevant for handling and visualizing uncertainty introduced with the original data and at later stages in the pipeline, which shows the importance of making the stages of the pipeline aware of uncertainty and allowing them to propagate uncertainty. We detail concepts and methods for visual mappings of uncertainty, distinguishing between explicit and implict representations of distributions, different ways to show summary statistics, and combined or hybrid visualizations. The basic concepts are illustrated for several examples of graph visualization under uncertainty. Finally, this review paper discusses implications for the visualization of biological data and future research directions.

13.
Health Data Sci ; 2022: 9840519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38487486

RESUMEN

Importance. Medical images are essential for modern medicine and an important research subject in visualization. However, medical experts are often not aware of the many advanced three-dimensional (3D) medical image visualization techniques that could increase their capabilities in data analysis and assist the decision-making process for specific medical problems. Our paper provides a review of 3D visualization techniques for medical images, intending to bridge the gap between medical experts and visualization researchers.Highlights. Fundamental visualization techniques are revisited for various medical imaging modalities, from computational tomography to diffusion tensor imaging, featuring techniques that enhance spatial perception, which is critical for medical practices. The state-of-the-art of medical visualization is reviewed based on a procedure-oriented classification of medical problems for studies of individuals and populations. This paper summarizes free software tools for different modalities of medical images designed for various purposes, including visualization, analysis, and segmentation, and it provides respective Internet links.Conclusions. Visualization techniques are a useful tool for medical experts to tackle specific medical problems in their daily work. Our review provides a quick reference to such techniques given the medical problem and modalities of associated medical images. We summarize fundamental techniques and readily available visualization tools to help medical experts to better understand and utilize medical imaging data. This paper could contribute to the joint effort of the medical and visualization communities to advance precision medicine.

14.
IEEE Comput Graph Appl ; 42(2): 33-44, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35263250

RESUMEN

Modern machines continuously log status reports over long periods of time, which are valuable data to optimize working routines. Data visualization is a commonly used tool to gain insights into these data, mostly in retrospective (e.g., to determine causal dependencies between the faults of different machines). We present an approach to bring such visual analyses to the shop floor to support reacting to faults in real time. This approach combines spatio-temporal analyses of time series using a handheld touch device with augmented reality for live monitoring. Important information augments machines directly in their real-world context, and detailed logs of current and historical events are displayed on the handheld device. In collaboration with an industry partner, we designed and tested our approach on a live production line to obtain feedback from operators. We compare our approach for monitoring and analysis with existing solutions that are currently deployed.


Asunto(s)
Realidad Aumentada , Comercio , Retroalimentación , Industrias , Estudios Retrospectivos
15.
Artículo en Inglés | MEDLINE | ID: mdl-37015637

RESUMEN

We introduce a conceptual model for scalability designed for visualization research. With this model, we systematically analyze over 120 visualization publications from 1990 to 2020 to characterize the different notions of scalability in these works. While many papers have addressed scalability issues, our survey identifies a lack of consistency in the use of the term in the visualization research community. We address this issue by introducing a consistent terminology meant to help visualization researchers better characterize the scalability aspects in their research. It also helps in providing multiple methods for supporting the claim that a work is "scalable." Our model is centered around an effort function with inputs and outputs. The inputs are the problem size and resources, whereas the outputs are the actual efforts, for instance, in terms of computational run time or visual clutter. We select representative examples to illustrate different approaches and facets of what scalability can mean in visualization literature. Finally, targeting the diverse crowd of visualization researchers without a scalability tradition, we provide a set of recommendations for how scalability can be presented in a clear and consistent way to improve fair comparison between visualization techniques and systems and foster reproducibility.

16.
IEEE Comput Graph Appl ; 42(2): 10-20, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139011

RESUMEN

Our built world is one of the most important factors for a livable future, accounting for massive impact on resource and energy use, as well as climate change, but also the social and economic aspects that come with population growth. The architecture, engineering, and construction industry is facing the challenge that it needs to substantially increase its productivity, let alone the quality of buildings of the future. In this article, we discuss these challenges in more detail, focusing on how digitization can facilitate this transformation of the industry, and link them to opportunities for visualization and augmented reality research. We illustrate solution strategies for advanced building systems based on wood and fiber.


Asunto(s)
Industria de la Construcción , Ingeniería , Predicción
17.
Vis Comput Ind Biomed Art ; 4(1): 24, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34585277

RESUMEN

In this paper, we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks. Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network. The technique can help answer questions, such as which parts of the input data have a higher impact on the prediction and how the model correlates each hidden state configuration with a certain output. Our visual analytics approach comprises several components: First, our input visualization shows the input sequence and how it relates to the output (using color coding). In addition, hidden states are visualized through a nonlinear projection into a 2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of the hidden states. Trajectories are also employed to show the details of the evolution of the hidden state configurations. Finally, a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for multi-class classifiers, and a histogram indicates the distances between the hidden states within the original space. The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to facilitate the analysis of the classifications and debugging for misclassified input sequences. To demonstrate the capability of our approach, we discuss two typical use cases for long short-term memory models applied to two widely used natural language processing datasets.

18.
IEEE Trans Vis Comput Graph ; 27(2): 1591-1600, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33048752

RESUMEN

Abstract-We propose a data-driven space-filling curve method for 2D and 3D visualization. Our flexible curve traverses the data elements in the spatial domain in a way that the resulting linearization better preserves features in space compared to existing methods. We achieve such data coherency by calculating a Hamiltonian path that approximately minimizes an objective function that describes the similarity of data values and location coherency in a neighborhood. Our extended variant even supports multiscale data via quadtrees and octrees. Our method is useful in many areas of visualization including multivariate or comparative visualization ensemble visualization of 2D and 3D data on regular grids or multiscale visual analysis of particle simulations. The effectiveness of our method is evaluated with numerical comparisons to existing techniques and through examples of ensemble and multivariate datasets.

19.
IEEE Trans Vis Comput Graph ; 27(2): 1558-1568, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33048698

RESUMEN

We propose a visualization method to understand the effect of multidimensional projection on local subspaces, using implicit function differentiation. Here, we understand the local subspace as the multidimensional local neighborhood of data points. Existing methods focus on the projection of multidimensional data points, and the neighborhood information is ignored. Our method is able to analyze the shape and directional information of the local subspace to gain more insights into the global structure of the data through the perception of local structures. Local subspaces are fitted by multidimensional ellipses that are spanned by basis vectors. An accurate and efficient vector transformation method is proposed based on analytical differentiation of multidimensional projections formulated as implicit functions. The results are visualized as glyphs and analyzed using a full set of specifically-designed interactions supported in our efficient web-based visualization tool. The usefulness of our method is demonstrated using various multi- and high-dimensional benchmark datasets. Our implicit differentiation vector transformation is evaluated through numerical comparisons; the overall method is evaluated through exploration examples and use cases.

20.
IEEE Trans Vis Comput Graph ; 27(2): 1343-1352, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33048746

RESUMEN

Causality is crucial to understanding the mechanisms behind complex systems and making decisions that lead to intended outcomes. Event sequence data is widely collected from many real-world processes, such as electronic health records, web clickstreams, and financial transactions, which transmit a great deal of information reflecting the causal relations among event types. Unfortunately, recovering causalities from observational event sequences is challenging, as the heterogeneous and high-dimensional event variables are often connected to rather complex underlying event excitation mechanisms that are hard to infer from limited observations. Many existing automated causal analysis techniques suffer from poor explainability and fail to include an adequate amount of human knowledge. In this paper, we introduce a visual analytics method for recovering causalities in event sequence data. We extend the Granger causality analysis algorithm on Hawkes processes to incorporate user feedback into causal model refinement. The visualization system includes an interactive causal analysis framework that supports bottom-up causal exploration, iterative causal verification and refinement, and causal comparison through a set of novel visualizations and interactions. We report two forms of evaluation: a quantitative evaluation of the model improvements resulting from the user-feedback mechanism, and a qualitative evaluation through case studies in different application domains to demonstrate the usefulness of the system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA