Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 200(9): 3151-3159, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29592962

RESUMEN

Allergen immunotherapy (AIT) is the only modality that can modify immune responses to allergen exposure, but therapeutic coverage is low. One strategy to improve AIT safety and efficacy is the use of new or improved adjuvants. This study investigates immune responses produced by microcrystalline tyrosine (MCT)-based vaccines as compared with conventional aluminum hydroxide (alum). Wild-type, immune-signaling-deficient, and TCR-transgenic mice were treated with different Ags (e.g., OVA and cat dander Fel d 1), plus MCT or alum as depot adjuvants. Specific Ab responses in serum were measured by ELISA, whereas cytokine secretion was measured both in culture supernatants by ELISA or by flow cytometry of spleen cells. Upon initiation of AIT in allergic mice, body temperature and further clinical signs were used as indicators for anaphylaxis. Overall, MCT and alum induced comparable B and T cell responses, which were independent of TLR signaling. Alum induced stronger IgE and IL-4 secretion than MCT. MCT and alum induced caspase-dependent IL-1ß secretion in human monocytes in vitro, but inflammasome activation had no functional effect on inflammatory and Ab responses measured in vivo. In sensitized mice, AIT with MCT-adjuvanted allergens caused fewer anaphylactic reactions compared with alum-adjuvanted allergens. As depot adjuvants, MCT and alum are comparably effective in strength and mechanism of Ag-specific IgG induction and induction of T cell responses. The biocompatible and biodegradable MCT seems therefore a suitable alternative adjuvant to alum-based vaccines and AIT.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Hidróxido de Aluminio/farmacología , Desensibilización Inmunológica/métodos , Tirosina/farmacología , Animales , Modelos Animales de Enfermedad , Hipersensibilidad/prevención & control , Inmunoglobulina E/inmunología , Inflamasomas/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA