Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(7): e111148, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36843552

RESUMEN

Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.


Asunto(s)
Resorción Ósea , Osteoclastos , Ratones , Animales , Humanos , Osteoclastos/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Huesos , Diferenciación Celular , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
2.
FASEB J ; 36(7): e22401, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726676

RESUMEN

During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Transcripción Activador 3/metabolismo , Diferenciación Celular , Línea Celular , Factores de Crecimiento de Fibroblastos , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiología , Regiones Promotoras Genéticas/genética , Regulación hacia Arriba
3.
Annu Rev Cell Dev Biol ; 25: 567-95, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19575644

RESUMEN

A seminal event in cancer progression is the ability of the neoplastic cell to mobilize the necessary machinery to breach surrounding extracellular matrix barriers while orchestrating a host stromal response that ultimately supports tissue-invasive and metastatic processes. With over 500 proteolytic enzymes identified in the human genome, interconnecting webs of protease-dependent and protease-independent processes have been postulated to drive the cancer cell invasion program via schemes of daunting complexity. Increasingly, however, a body of evidence has begun to emerge that supports a unifying model wherein a small group of membrane-tethered enzymes, termed the membrane-type matrix metalloproteinases (MT-MMPs), plays a dominant role in regulating cancer cell, as well as stromal cell, traffic through the extracellular matrix barriers assembled by host tissues in vivo. Understanding the mechanisms that underlie the regulation and function of these metalloenzymes as host cell populations traverse the dynamic extracellular matrix assembled during neoplastic states should provide new and testable theories regarding cancer invasion and metastasis.


Asunto(s)
Matriz Extracelular/patología , Metaloproteinasas de la Matriz Asociadas a la Membrana/metabolismo , Neoplasias/patología , Animales , Membrana Basal/patología , Humanos , Células del Estroma/patología
4.
Genes Dev ; 26(4): 395-413, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22345520

RESUMEN

Macrophages play critical roles in events ranging from host defense to obesity and cancer, where they infiltrate affected tissues and orchestrate immune responses in tandem with the remodeling of the extracellular matrix (ECM). Despite the dual roles played by macrophages in inflammation, the functions of macrophage-derived proteinases are typically relegated to tissue-invasive or -degradative events. Here we report that the membrane-tethered matrix metalloenzyme MT1-MMP not only serves as an ECM-directed proteinase, but unexpectedly controls inflammatory gene responses wherein MT1-MMP(-/-) macrophages mount exaggerated chemokine and cytokine responses to immune stimuli both in vitro and in vivo. MT1-MMP modulates inflammatory responses in a protease-independent fashion in tandem with its trafficking to the nuclear compartment, where it triggers the expression and activation of a phosphoinositide 3-kinase δ (PI3Kδ)/Akt/GSK3ß signaling cascade. In turn, MT1-MMP-dependent PI3Kδ activation regulates the immunoregulatory Mi-2/NuRD nucleosome remodeling complex that is responsible for controlling macrophage immune response. These findings identify a novel role for nuclear MT1-MMP as a previously unsuspected transactivator of signaling networks central to macrophage immune responses.


Asunto(s)
Macrófagos/inmunología , Metaloproteinasa 14 de la Matriz/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Movimiento Celular , Núcleo Celular/metabolismo , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I , Citocinas/genética , Regulación de la Expresión Génica , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Ratones , Nucleosomas/metabolismo , Transporte de Proteínas , Proteolisis
5.
J Biol Chem ; 293(21): 8113-8127, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29643184

RESUMEN

Following ENU mutagenesis, a phenodeviant line was generated, termed the "Cartoon mouse," that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp-null animals as well as the functional characteristics of MT1-MMP-/- cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P-expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP-/- mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.


Asunto(s)
Membrana Celular/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Hemopexina/metabolismo , Metaloproteinasa 14 de la Matriz/fisiología , Animales , Cristalografía por Rayos X , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Unión Proteica , Transporte de Proteínas
6.
J Cell Sci ; 130(23): 4013-4027, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29061881

RESUMEN

Cadherin-based intercellular adhesions are essential players in epithelial homeostasis, but their dynamic regulation during tissue morphogenesis and remodeling remain largely undefined. Here, we characterize an unexpected role for the membrane-anchored metalloproteinase MT2-MMP in regulating epithelial cell quiescence. Following co-immunoprecipitation and mass spectrometry, the MT2-MMP cytosolic tail was found to interact with the zonula occludens protein-1 (ZO-1) at the apical junctions of polarized epithelial cells. Functionally, MT2-MMP localizes in the apical domain of epithelial cells where it cleaves E-cadherin and promotes epithelial cell accumulation, a phenotype observed in 2D polarized cells as well as 3D cysts. MT2-MMP-mediated cleavage subsequently disrupts apical E-cadherin-mediated cell quiescence resulting in relaxed apical cortical tension favoring cell extrusion and re-sorting of Src kinase activity to junctional complexes, thereby promoting proliferation. Physiologically, MT2-MMP loss of function alters E-cadherin distribution, leading to impaired 3D organoid formation by mouse colonic epithelial cells ex vivo and reduction of cell proliferation within intestinal crypts in vivo Taken together, these studies identify an MT2-MMP-E-cadherin axis that functions as a novel regulator of epithelial cell homeostasis in vivo.


Asunto(s)
Cadherinas/metabolismo , Homeostasis/fisiología , Mucosa Intestinal/metabolismo , Metaloproteinasa 15 de la Matriz/metabolismo , Uniones Adherentes/metabolismo , Cadherinas/genética , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Uniones Estrechas/metabolismo
7.
Development ; 143(21): 3956-3968, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27633994

RESUMEN

During late embryogenesis, mammary epithelial cells initiate migration programs that drive ductal invasion into the surrounding adipose-rich mesenchyme. Currently, branching morphogenesis is thought to depend on the mobilization of the membrane-anchored matrix metalloproteinases MMP14 (MT1-MMP) and MMP15 (MT2-MMP), which drive epithelial cell invasion by remodeling the extracellular matrix and triggering associated signaling cascades. However, the roles that these proteinases play during mammary gland development in vivo remain undefined. Here, we characterize the impact of global Mmp14 and Mmp15 targeting on early postnatal mammary gland development in mice. Unexpectedly, both Mmp14-/- and Mmp15-/- mammary glands retain the ability to generate intact ductal networks. Although neither proteinase is required for branching morphogenesis, transcriptome profiling reveals a key role for MMP14 and MMP15 in regulating mammary gland adipocyte differentiation. Whereas MMP14 promotes the generation of white fat depots crucial for energy storage, MMP15 differentially controls the formation of thermogenic brown fat. Taken together, these data not only indicate that current paradigms relevant to proteinase-dependent morphogenesis need be revisited, but also identify new roles for the enzymes in regulating adipocyte fate determination in the developing mammary gland.


Asunto(s)
Glándulas Mamarias Animales/crecimiento & desarrollo , Metaloproteinasa 14 de la Matriz/fisiología , Metaloproteinasa 15 de la Matriz/fisiología , Morfogénesis/genética , Adipocitos/fisiología , Adipogénesis/genética , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Metabolismo Energético/genética , Femenino , Metaloproteinasa 14 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Termogénesis/genética
8.
Proc Natl Acad Sci U S A ; 111(41): 14882-7, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267635

RESUMEN

Efforts to develop unbiased screens for identifying novel function-blocking monoclonal antibodies (mAbs) in human carcinomatous states have been hampered by the limited ability to design in vitro models that recapitulate tumor cell behavior in vivo. Given that only invasive carcinoma cells gain permanent access to type I collagen-rich interstitial tissues, an experimental platform was established in which human breast cancer cells were embedded in 3D aldimine cross-linked collagen matrices and used as an immunogen to generate mAb libraries. In turn, cancer-cell-reactive antibodies were screened for their ability to block carcinoma cell proliferation within collagen hydrogels that mimic the in vivo environment. As a proof of principle, a single function-blocking mAb out of 15 identified was selected for further analysis and found to be capable of halting carcinoma cell proliferation, inducing apoptosis, and exerting global changes in gene expression in vitro. The ability of this mAb to block carcinoma cell proliferation and metastatic activity was confirmed in vivo, and the target antigen was identified by mass spectroscopy as the α2 subunit of the α2ß1 integrin, one of the major type I collagen-binding receptors in mammalian cells. Validating the ability of the in vitro model to predict patterns of antigen expression in the disease setting, immunohistochemical analyses of tissues from patients with breast cancer verified markedly increased expression of the α2 subunit in vivo. These results not only highlight the utility of this discovery platform for rapidly selecting and characterizing function-blocking, anticancer mAbs in an unbiased fashion, but also identify α2ß1 as a potential target in human carcinomatous states.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Neoplasias de la Mama/inmunología , Inmunoensayo/métodos , Animales , Antígenos de Neoplasias/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Pollos , Extravasación de Materiales Terapéuticos y Diagnósticos , Femenino , Humanos , Integrina alfa2/metabolismo , Ratones Desnudos , Transcriptoma/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Biochim Biophys Acta ; 1840(2): 901-5, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23648414

RESUMEN

BACKGROUND: Cysteine and methionine are the two sulfur containing amino acids in proteins. While the roles of protein-bound cysteinyl residues as endogenous antioxidants are well appreciated, those of methionine remain largely unexplored. SCOPE: We summarize the key roles of methionine residues in proteins. MAJOR CONCLUSION: Recent studies establish that cysteine and methionine have remarkably similar functions. GENERAL SIGNIFICANCE: Both cysteine and methionine serve as important cellular antioxidants, stabilize the structure of proteins, and can act as regulatory switches through reversible oxidation and reduction. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Asunto(s)
Metionina/química , Proteínas/química , Animales , Humanos , Oxidación-Reducción
10.
Proc Natl Acad Sci U S A ; 109(41): 16654-9, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23011797

RESUMEN

Slug (Snail2) plays critical roles in regulating the epithelial-mesenchymal transition (EMT) programs operative during development and disease. However, the means by which Slug activity is controlled remain unclear. Herein we identify an unrecognized canonical Wnt/GSK3ß/ß-Trcp1 axis that controls Slug activity. In the absence of Wnt signaling, Slug is phosphorylated by GSK3ß and subsequently undergoes ß-Trcp1-dependent ubiquitination and proteosomal degradation. Alternatively, in the presence of canonical Wnt ligands, GSK3ß kinase activity is inhibited, nuclear Slug levels increase, and EMT programs are initiated. Consistent with recent studies describing correlative associations in basal-like breast cancers between Wnt signaling, increased Slug levels, and reduced expression of the tumor suppressor Breast Cancer 1, Early Onset (BRCA1), further studies demonstrate that Slug-as well as Snail-directly represses BRCA1 expression by recruiting the chromatin-demethylase, LSD1, and binding to a series of E-boxes located within the BRCA1 promoter. Consonant with these findings, nuclear Slug and Snail expression are increased in association with BRCA1 repression in a cohort of triple-negative breast cancer patients. Together, these findings establish unique functional links between canonical Wnt signaling, Slug expression, EMT, and BRCA1 regulation.


Asunto(s)
Proteína BRCA1/metabolismo , Transición Epitelial-Mesenquimal , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Proteína BRCA1/genética , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Inmunohistoquímica , Células MCF-7 , Metilación , Datos de Secuencia Molecular , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Ubiquitinación
11.
Proc Natl Acad Sci U S A ; 109(28): 11312-7, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22745173

RESUMEN

Aberrant activation of canonical Wingless-type MMTV integration site family (Wnt) signaling is pathognomonic of colorectal cancers (CRC) harboring functional mutations in either adenomatous polyposis coli or ß-catenin. Coincident with Wnt cascade activation, CRCs also up-regulate the expression of Wnt pathway feedback inhibitors, particularly the putative tumor suppressor, Axin2. Because Axin2 serves as a negative regulator of canonical Wnt signaling in normal cells, recent attention has focused on the utility of increasing Axin2 levels in CRCs as a means to slow tumor progression. However, rather than functioning as a tumor suppressor, we demonstrate that Axin2 acts as a potent promoter of carcinoma behavior by up-regulating the activity of the transcriptional repressor, Snail1, inducing a functional epithelial-mesenchymal transition (EMT) program and driving metastatic activity. Silencing Axin2 expression decreases Snail1 activity, reverses EMT, and inhibits CRC invasive and metastatic activities in concert with global effects on the Wnt-regulated cancer cell transcriptome. The further identification of Axin2 and nuclear Snail1 proteins at the invasive front of human CRCs supports a revised model wherein Axin2 acts as a potent tumor promoter in vivo.


Asunto(s)
Proteína Axina/metabolismo , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica , Membrana Basal/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Silenciador del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Transducción de Señal , Factores de Transcripción de la Familia Snail , Tanquirasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
12.
Nat Chem Biol ; 8(9): 740-1, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22907088

RESUMEN

Type IV collagen, a major constituent of basement membranes, contains an unusual intermolecular sulfilimine crosslink whose route of biosynthesis has remained undefined. An oxidative triad consisting of peroxidasin, H(2)O(2) and halide is now shown to drive sulfilimine generation in vivo.


Asunto(s)
Colágeno Tipo IV/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Iminas/metabolismo , Peroxidasa/metabolismo , Animales , Drosophila , Oxidación-Reducción , Peroxidasina
13.
Circulation ; 126(25): 3070-80, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23136157

RESUMEN

BACKGROUND: Acute aortic dissection (AAD) is a life-threatening vascular disease without effective pharmaceutical therapy. Matrix metalloproteinases (MMPs) are implicated in the development of chronic vascular diseases including aneurysm, but the key effectors and mechanism of action remain unknown. To define further the role of MMPs in AAD, we screened circulating MMPs in AAD patients, and then generated a novel mouse model for AAD to characterize the mechanism of action. METHODS AND RESULTS: MMP9 and angiotensin II were elevated significantly in blood samples from AAD patients than in those from the patients with nonruptured chronic aortic aneurysm or healthy volunteers. Based on the findings, we established a novel AAD model by infusing angiotensin II to immature mice that had been received a lysyl oxidase inhibitor, ß-aminopropionitrile monofumarate. AAD was developed successfully in the thoracic aorta by angiotensin II administration to ß-aminopropionitrile monofumarate-treated wild-type mice, with an incidence of 20%, 80%, and 100% after 6, 12, and 24 hours, respectively. Neutrophil infiltrations were observed in the intima of the thoracic aorta, and the overexpression of MMP9 in the aorta was demonstrated by reverse transcription polymerase chain reaction, gelatin zymography, and immunohistochemistry. The incidence of AAD was reduced significantly by 40% following the administration of an MMP inhibitor and was almost blocked completely in MMP(-/-) mice without any influence on neutrophil infiltration. Neutrophil depletion by injection of anti-granulocyte-differentiation antigen-1 (anti-Gr-1) antibody also significantly decreased the incidence of AAD. CONCLUSIONS: These data suggest that AAD is initiated by neutrophils that have infiltrated the aortic intima and released MMP9 in response to angiotensin II.


Asunto(s)
Aneurisma de la Aorta/etiología , Disección Aórtica/etiología , Metaloproteinasa 9 de la Matriz/fisiología , Neutrófilos/enzimología , Enfermedad Aguda , Anciano , Disección Aórtica/enzimología , Angiotensina II/sangre , Angiotensina II/farmacología , Animales , Aneurisma de la Aorta/enzimología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/sangre , Ratones , Persona de Mediana Edad , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/fisiología
14.
J Am Chem Soc ; 135(24): 9139-48, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23701445

RESUMEN

Matrix metalloproteinases (MMPs) are zinc endopeptidases that play roles in numerous pathophysiological processes and therefore are promising drug targets. However, the large size of this family and a lack of highly selective compounds that can be used for imaging or inhibition of specific MMPs members has limited efforts to better define their biological function. Here we describe a protein engineering strategy coupled with small-molecule probe design to selectively target individual members of the MMP family. Specifically, we introduce a cysteine residue near the active-site of a selected protease that does not alter its overall activity or function but allows direct covalent modification by a small-molecule probe containing a reactive electrophile. This specific engineered interaction between the probe and the target protease provides a means to both image and inhibit the modified protease with absolute specificity. Here we demonstrate the feasibility of the approach for two distinct MMP proteases, MMP-12 and MT1-MMP (or MMP-14).


Asunto(s)
Metaloproteinasa 12 de la Matriz/análisis , Metaloproteinasa 1 de la Matriz/análisis , Técnicas de Sonda Molecular , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Animales , Línea Celular , Cisteína/análisis , Cisteína/genética , Cisteína/metabolismo , Humanos , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Imagen Óptica , Alineación de Secuencia , Pez Cebra
15.
Am J Pathol ; 180(5): 1863-78, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22464947

RESUMEN

The myocardial extracellular matrix (ECM), an interwoven meshwork of proteins, glycoproteins, proteoglycans, and glycosaminoglycans that is dominated by polymeric fibrils of type I collagen, serves as the mechanical scaffold on which myocytes are arrayed for coordinated and synergistic force transduction. Following ischemic injury, cardiac ECM remodeling is initiated via localized proteolysis, the bulk of which has been assigned to matrix metalloproteinase (MMP) family members. Nevertheless, the key effector(s) of myocardial type I collagenolysis both in vitro and in vivo have remained unidentified. In this study, using cardiac explants from mice deficient in each of the major type I collagenolytic MMPs, including MMP-13, MMP-8, MMP-2, MMP-9, or MT1-MMP, we identify the membrane-anchored MMP, MT1-MMP, as the dominant collagenase that is operative within myocardial tissues in vitro. Extending these observations to an in vivo setting, mice heterozygous for an MT1-MMP-null allele display a distinct survival advantage and retain myocardial function relative to wild-type littermates in an experimental model of myocardial infarction, effects associated with preservation of the myocardial type I collagen network as a consequence of the decreased collagenolytic potential of cardiac fibroblasts. This study identifies MT1-MMP as a key MMP responsible for effecting postinfarction cardiac ECM remodeling and cardiac dysfunction.


Asunto(s)
Matriz Extracelular/enzimología , Metaloproteinasa 14 de la Matriz/fisiología , Infarto del Miocardio/enzimología , Remodelación Ventricular/fisiología , Animales , Colágeno Tipo I/metabolismo , Matriz Extracelular/fisiología , Femenino , Fibroblastos/enzimología , Hibridación in Situ , Metaloproteinasa 14 de la Matriz/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica/diagnóstico por imagen , Isquemia Miocárdica/metabolismo , Técnicas de Cultivo de Órganos , Ultrasonografía
16.
Nat Cell Biol ; 8(12): 1398-406, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17072303

RESUMEN

Accumulating evidence indicates that hyperactive Wnt signalling occurs in association with the development and progression of human breast cancer. As a consequence of engaging the canonical Wnt pathway, a beta-catenin-T-cell factor (TCF) transcriptional complex is generated, which has been postulated to trigger the epithelial-mesenchymal transition (EMT) that characterizes the tissue-invasive phenotype. However, the molecular mechanisms by which the beta-catenin-TCF complex induces EMT-like programmes remain undefined. Here, we demonstrate that canonical Wnt signalling engages tumour cell dedifferentiation and tissue-invasive activity through an Axin2-dependent pathway that stabilizes the Snail1 zinc-transcription factor, a key regulator of normal and neoplastic EMT programmes. Axin2 regulates EMT by acting as a nucleocytoplasmic chaperone for GSK3beta, the dominant kinase responsible for controlling Snail1 protein turnover and activity. As dysregulated Wnt signalling marks a diverse array of cancerous tissue types, the identification of a beta-catenin-TCF-regulated Axin2-GSK3beta-Snail1 axis provides new mechanistic insights into cancer-associated EMT programmes.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas del Citoesqueleto/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , Secuencia de Aminoácidos , Animales , Proteína Axina , Neoplasias de la Mama/genética , Núcleo Celular/metabolismo , Embrión de Pollo , Citoplasma/metabolismo , Proteínas del Citoesqueleto/química , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta , Humanos , Mesodermo/patología , Datos de Secuencia Molecular , Invasividad Neoplásica , Señales de Exportación Nuclear , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción TCF/metabolismo , Factores de Transcripción/genética , Células Tumorales Cultivadas , beta Catenina/metabolismo
17.
Nat Commun ; 14(1): 4271, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460553

RESUMEN

Multiple myeloma bone disease is characterized by the development of osteolytic bone lesions. Recent work identified matrix metalloproteinase 13 as a myeloma-derived fusogen that induces osteoclast activation independent of its proteolytic activity. We now identify programmed death-1 homolog, PD-1H, as the bona fide MMP-13 receptor on osteoclasts. Silencing PD-1H or using Pd-1h-/- bone marrow cells abrogates the MMP-13-enhanced osteoclast fusion and bone-resorptive activity. Further, PD-1H interacts with the actin cytoskeleton and plays a necessary role in supporting c-Src activation and sealing zone formation. The critical role of PD-1H in myeloma lytic bone lesions was confirmed using a Pd-1h-/- myeloma bone disease mouse model wherein myeloma cells injected into Pd-1h-/-Rag2-/- results in attenuated bone destruction. Our findings identify a role of PD-1H in bone biology independent of its known immunoregulatory functions and suggest that targeting the MMP-13/PD-1H axis may represent a potential approach for the treatment of myeloma associated osteolysis.


Asunto(s)
Mieloma Múltiple , Osteólisis , Animales , Ratones , Huesos/patología , Proteínas Portadoras , Metaloproteinasa 13 de la Matriz , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Osteoclastos/patología , Osteólisis/genética , Osteólisis/patología
18.
J Cell Biol ; 222(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36880731

RESUMEN

Bone-resorbing osteoclasts mobilize proteolytic enzymes belonging to the matrix metalloproteinase (MMP) family to directly degrade type I collagen, the dominant extracellular matrix component of skeletal tissues. While searching for additional MMP substrates critical to bone resorption, Mmp9/Mmp14 double-knockout (DKO) osteoclasts-as well as MMP-inhibited human osteoclasts-unexpectedly display major changes in transcriptional programs in tandem with compromised RhoA activation, sealing zone formation and bone resorption. Further study revealed that osteoclast function is dependent on the ability of Mmp9 and Mmp14 to cooperatively proteolyze the ß-galactoside-binding lectin, galectin-3, on the cell surface. Mass spectrometry identified the galectin-3 receptor as low-density lipoprotein-related protein-1 (Lrp1), whose targeting in DKO osteoclasts fully rescues RhoA activation, sealing zone formation and bone resorption. Together, these findings identify a previously unrecognized galectin-3/Lrp1 axis whose proteolytic regulation controls both the transcriptional programs and the intracellular signaling cascades critical to mouse as well as human osteoclast function.


Asunto(s)
Resorción Ósea , Galectina 3 , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Osteoclastos , Animales , Humanos , Ratones , Resorción Ósea/genética , Galectina 3/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Metaloproteinasa 14 de la Matriz , Metaloproteinasa 9 de la Matriz
19.
Blood ; 115(2): 221-9, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19901267

RESUMEN

Human mesenchymal stem cells (hMSCs) localized to bone marrow, nonhematopoietic organs, as well as perivascular niches are postulated to traffic through type I collagen-rich stromal tissues to first infiltrate sites of tissue damage, inflammation, or neoplasia and then differentiate. Nevertheless, the molecular mechanisms supporting the ability of hMSCs to remodel 3-dimensional (3D) collagenous barriers during trafficking or differentiation remain undefined. Herein, we demonstrate that hMSCs degrade and penetrate type I collagen networks in tandem with the expression of a 5-member set of collagenolytic matrix metalloproteinases (MMPs). Specific silencing of each of these proteases reveals that only a single membrane-tethered metalloenzyme, termed MT1-MMP, plays a required role in hMSC-mediated collagenolysis, 3D invasion, and intravasation. Further, once confined within type I collagen-rich tissue, MT1-MMP also controls hMSC differentiation in a 3D-specific fashion. Together, these data demonstrate that hMSC invasion and differentiation programs fall under the control of the pericellular collagenase, MT1-MMP.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Colágeno Tipo I/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Metaloproteinasa 14 de la Matriz/biosíntesis , Células Madre Mesenquimatosas/enzimología , Células Cultivadas , Silenciador del Gen , Humanos , Células Madre Mesenquimatosas/citología
20.
J Immunol ; 184(11): 6396-406, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20483788

RESUMEN

In rheumatoid arthritis, the coordinated expansion of the synoviocyte mass is coupled with a pathologic angiogenic response that leads to the destructive remodeling of articular as well as surrounding connective tissues. Although rheumatoid synoviocytes express a multiplicity of proteolytic enzymes, the primary effectors of cartilage, ligament, and tendon damage remain undefined. Herein, we demonstrate that human rheumatoid synoviocytes mobilize the membrane-anchored matrix metalloproteinase (MMP), membrane-type I MMP (MT1-MMP), to dissolve and invade type I and type II collagen-rich tissues. Though rheumatoid synoviocytes also express a series of secreted collagenases, these proteinases are ineffective in mediating collagenolytic activity in the presence of physiologic concentrations of plasma- or synovial fluid-derived antiproteinases. Furthermore, MT1-MMP not only directs the tissue-destructive properties of rheumatoid synoviocytes but also controls synoviocyte-initiated angiogenic responses in vivo. Together, these findings identify MT1-MMP as a master regulator of the pathologic extracellular matrix remodeling that characterizes rheumatoid arthritis as well as the coupled angiogenic response that maintains the aggressive phenotype of the advancing pannus.


Asunto(s)
Artritis Reumatoide/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Membrana Sinovial/citología , Artritis Reumatoide/patología , Western Blotting , Células Cultivadas , Matriz Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Membrana Sinovial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA