Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 20(9): e1012596, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39331680

RESUMEN

Coronavirus genomes have evolutionary histories shaped extensively by recombination. Yet, how often recombination occurs at a cellular level, or the factors that regulate recombination rates, are poorly understood. Utilizing experimental co-infections with pairs of genetically distinct coronaviruses, we found that recombination is both frequent and rare during coinfection. Recombination occurred in every instance of co-infection yet resulted in relatively few recombinant RNAs. By integrating a discrete-time Susceptible-Infected-Removed (SIR) model, we found that rates of recombination are determined primarily by rates of cellular co-infection, rather than other possible barriers such as RNA compartmentalization. By staggering the order and timing of infection with each virus we also found that rates of co-infection are themselves heavily influenced by genetic and ecological mechanisms, including superinfection exclusion and the relative fitness of competing viruses. Our study highlights recombination as a potent yet regulated force: frequent enough to ensure a steady influx of genetic variation but also infrequent enough to maintain genomic integrity. As recombination is thought to be an important driver of host-switching and disease emergence, our study provides new insights into the factors that regulate coronavirus recombination and evolution more broadly.


Asunto(s)
Coinfección , Recombinación Genética , Coinfección/virología , Animales , Humanos , Genoma Viral , Coronavirus/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , ARN Viral/genética
2.
Arch Virol ; 167(10): 1977-1987, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35781557

RESUMEN

As part of a broad One Health surveillance effort to detect novel viruses in wildlife and people, we report several paramyxovirus sequences sampled primarily from bats during 2013 and 2014 in Brazil and Malaysia, including seven from which we recovered full-length genomes. Of these, six represent the first full-length paramyxovirid genomes sequenced from the Americas, including two that are the first full-length bat morbillivirus genome sequences published to date. Our findings add to the vast number of viral sequences in public repositories, which have been increasing considerably in recent years due to the rising accessibility of metagenomics. Taxonomic classification of these sequences in the absence of phenotypic data has been a significant challenge, particularly in the subfamily Orthoparamyxovirinae, where the rate of discovery of novel sequences has been substantial. Using pairwise amino acid sequence classification (PAASC), we propose that five of these sequences belong to members of the genus Jeilongvirus and two belong to members of the genus Morbillivirus. We also highlight inconsistencies in the classification of Tupaia virus and Mòjiang virus using the same demarcation criteria and suggest reclassification of these viruses into new genera. Importantly, this study underscores the critical importance of sequence length in PAASC analysis as well as the importance of biological characteristics such as genome organization in the taxonomic classification of viral sequences.


Asunto(s)
Quirópteros , Morbillivirus , Virus , Animales , Brasil , Genoma Viral , Humanos , Malasia , Morbillivirus/genética , Paramyxoviridae/genética , Filogenia
3.
Cell Host Microbe ; 31(6): 874-889, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37321171

RESUMEN

Recombination is thought to be a mechanism that facilitates cross-species transmission in coronaviruses, thus acting as a driver of coronavirus spillover and emergence. Despite its significance, the mechanism of recombination is poorly understood, limiting our potential to estimate the risk of novel recombinant coronaviruses emerging in the future. As a tool for understanding recombination, here, we outline a framework of the recombination pathway for coronaviruses. We review existing literature on coronavirus recombination, including comparisons of naturally observed recombinant genomes as well as in vitro experiments, and place the findings into the recombination pathway framework. We highlight gaps in our understanding of coronavirus recombination illustrated by the framework and outline how further experimental research is critical for disentangling the molecular mechanism of recombination from external environmental pressures. Finally, we describe how an increased understanding of the mechanism of recombination can inform pandemic predictive intelligence, with a retrospective emphasis on SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudios Retrospectivos , Filogenia , Recombinación Genética
4.
Microbiol Spectr ; 9(2): e0019721, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34468193

RESUMEN

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic variants that may alter viral fitness highlights the urgency of widespread next-generation sequencing (NGS) surveillance. To profile genetic variants of the entire SARS-CoV-2 genome, we developed and clinically validated a hybridization capture SARS-CoV-2 NGS assay, integrating novel methods for panel design using double-stranded DNA (dsDNA) biotin-labeled probes, and built accompanying software. This test is the first hybrid capture-based NGS assay given Food and Drug Administration (FDA) emergency use authorization for detection of the SARS-CoV-2 virus. The positive and negative percent agreement (PPA and NPA, respectively) were defined in comparison to the results for an orthogonal real-time reverse transcription polymerase chain reaction (RT-PCR) assay (PPA and NPA, 96.7 and 100%, respectively). The limit of detection was established to be 800 copies/ml with an average fold enrichment of 46,791. Furthermore, utilizing the research-use-only analysis to profile the variants, we identified 55 novel mutations, including 11 in the functionally important spike protein. Finally, we profiled the full nasopharyngeal microbiome using metagenomics and found overrepresentation of 7 taxa and evidence of macrolide resistance in SARS-CoV-2-positive patients. This hybrid capture NGS assay, coupled with optimized software, is a powerful approach to detect and comprehensively map SARS-CoV-2 genetic variants for tracking viral evolution and guiding vaccine updates. IMPORTANCE This is the first FDA emergency-use-authorized hybridization capture-based next-generation sequencing (NGS) assay to detect the SARS-CoV-2 genome. Viral metagenomics and the novel hybrid capture NGS-based assay, along with its research-use-only analysis, can provide important genetic insights into SARS-CoV-2 and other emerging pathogens and improve surveillance and early detection, potentially preventing or mitigating new outbreaks. Better understanding of the continuously evolving SARS-CoV-2 viral genome and the impact of genetic variants may provide individual risk stratification, precision therapeutic options, improved molecular diagnostics, and population-based therapeutic solutions.


Asunto(s)
Variación Genética/genética , Genoma Viral/genética , Microbiota/genética , Nasofaringe/microbiología , SARS-CoV-2/genética , Antibacterianos/farmacología , COVID-19/patología , Farmacorresistencia Bacteriana/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Límite de Detección , Macrólidos/farmacología , Metagenómica/métodos , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/aislamiento & purificación
5.
Nat Microbiol ; 3(10): 1084-1089, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30150734

RESUMEN

Here we describe the complete genome of a new ebolavirus, Bombali virus (BOMV) detected in free-tailed bats in Sierra Leone (little free-tailed (Chaerephon pumilus) and Angolan free-tailed (Mops condylurus)). The bats were found roosting inside houses, indicating the potential for human transmission. We show that the viral glycoprotein can mediate entry into human cells. However, further studies are required to investigate whether exposure has actually occurred or if BOMV is pathogenic in humans.


Asunto(s)
Quirópteros/virología , Ebolavirus/genética , Animales , Línea Celular Tumoral , Quirópteros/clasificación , Quirópteros/genética , Ebolavirus/clasificación , Genoma Viral/genética , Humanos , Filogenia , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Carga Viral , Internalización del Virus
6.
Nat Microbiol ; 3(12): 1486, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30410089

RESUMEN

In the version of this Article originally published, the bat species for 12 individuals were incorrectly identified in Supplementary Table 1 and 2. After resequencing the MT-CytB and MT-CO1 segments and reviewing the data, the authors have corrected the errors for these 12 animals. In the amended version of the Supplementary Information, Supplementary Tables 1 and 2 have been replaced to include the corrected host species information. None of the 12 bats affected were positive for the Bombali virus, and the conclusions of the study are therefore unchanged.

7.
ISME J ; 9(7): 1570-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25514536

RESUMEN

The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines.


Asunto(s)
Quitridiomicetos/patogenicidad , Micosis/veterinaria , Ranidae/microbiología , Animales , California/epidemiología , Micosis/epidemiología , Micosis/microbiología , Dinámica Poblacional , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA