Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nucleic Acids Res ; 42(5): 3089-103, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24335147

RESUMEN

Base damage and topoisomerase I (Top1)-linked DNA breaks are abundant forms of endogenous DNA breakage, contributing to hereditary ataxia and underlying the cytotoxicity of a wide range of anti-cancer agents. Despite their frequency, the overlapping mechanisms that repair these forms of DNA breakage are largely unknown. Here, we report that depletion of Tyrosyl DNA phosphodiesterase 1 (TDP1) sensitizes human cells to alkylation damage and the additional depletion of apurinic/apyrimidinic endonuclease I (APE1) confers hypersensitivity above that observed for TDP1 or APE1 depletion alone. Quantification of DNA breaks and clonogenic survival assays confirm a role for TDP1 in response to base damage, independently of APE1. The hypersensitivity to alkylation damage is partly restored by depletion of Top1, illustrating that alkylating agents can trigger cytotoxic Top1-breaks. Although inhibition of PARP activity does not sensitize TDP1-deficient cells to Top1 poisons, it confers increased sensitivity to alkylation damage, highlighting partially overlapping roles for PARP and TDP1 in response to genotoxic challenge. Finally, we demonstrate that cancer cells in which TDP1 is inherently deficient are hypersensitive to alkylation damage and that TDP1 depletion sensitizes glioblastoma-resistant cancer cells to the alkylating agent temozolomide.


Asunto(s)
Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Hidrolasas Diéster Fosfóricas/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Alquilantes/toxicidad , Línea Celular , Línea Celular Tumoral , ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , Humanos , Neoplasias/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas/deficiencia , Hidrolasas Diéster Fosfóricas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Transcripción Genética
2.
Front Physiol ; 10: 1144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632280

RESUMEN

Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple cancer types, including disseminated and aggressive diseases in the palliative setting. Radiotherapy efficacy could be improved in combination with drugs that regulate the ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal factors regulating the cancer and normal tissue response to IR. Here, we summarize the findings on the involvement of CRLs in the response of cancer cells to IR, and we discuss the therapeutic approaches to target the CRLs which could be exploited in the clinic.

3.
Nat Commun ; 8: 14011, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134253

RESUMEN

The Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin and Smc5/6 are involved in the organization of higher-order chromosome structure-which is essential for accurate chromosome duplication and segregation. Each complex is scaffolded by a specific SMC protein dimer (heterodimer in eukaryotes) held together via their hinge domains. Here we show that the Smc5/6-hinge, like those of cohesin and condensin, also forms a toroidal structure but with distinctive subunit interfaces absent from the other SMC complexes; an unusual 'molecular latch' and a functional 'hub'. Defined mutations in these interfaces cause severe phenotypic effects with sensitivity to DNA-damaging agents in fission yeast and reduced viability in human cells. We show that the Smc5/6-hinge complex binds preferentially to ssDNA and that this interaction is affected by both 'latch' and 'hub' mutations, suggesting a key role for these unique features in controlling DNA association by the Smc5/6 complex.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Reparación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Adenosina Trifosfatasas/química , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Supervivencia Celular/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Daño del ADN , Proteínas de Unión al ADN/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Unión Proteica , Dominios Proteicos/fisiología , Multimerización de Proteína/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Cohesinas
4.
J Clin Invest ; 126(8): 2881-92, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27427983

RESUMEN

The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Ciclo Celular/genética , Rotura Cromosómica , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Pulmonares/genética , Alelos , Linfocitos B/citología , Proliferación Celular , Niño , Preescolar , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Cromosomas/ultraestructura , Daño del ADN , Reparación del ADN , Replicación del ADN , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Homocigoto , Humanos , Lactante , Masculino , Meiosis , Mitosis , Mutación Missense , Linaje , Recombinación Genética , Síndrome , Linfocitos T/citología
5.
Nat Commun ; 3: 733, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22415824

RESUMEN

Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini. Here we show that TDP1 is a substrate for modification by the small ubiquitin-like modifier SUMO. We purify SUMOylated TDP1 from mammalian cells and identify the SUMOylation site as lysine 111. While SUMOylation exhibits no impact on TDP1 catalytic activity, it promotes its accumulation at sites of DNA damage. A TDP1 SUMOylation-deficient mutant displays a reduced rate of repair of chromosomal single-strand breaks arising from transcription-associated topoisomerase 1 activity or oxidative stress. These data identify a role for SUMO during single-strand break repair, and suggest a mechanism for protecting the nervous system from genotoxic stress.


Asunto(s)
Roturas del ADN de Cadena Simple , Reparación del ADN , Hidrolasas Diéster Fosfóricas/metabolismo , Proteína SUMO-1/metabolismo , Sitios de Unión , Línea Celular , Daño del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas Fluorescentes Verdes , Células HEK293 , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Sumoilación , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA