Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(7): 3982-3991, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38252712

RESUMEN

BACKGROUND: Many diseases may be caused by pathogens and oxidative stress resulting from carcinogens. Earlier studies have highlighted the antimicrobial and antioxidant effects of plant essential oils (EO). It is crucial to effectively utilize agricultural waste to achieve a sustainable agricultural economy and protect the environment. The present study aimed to evaluate the potential benefits of EO extracted from the discarded peels of Citrus depressa Hayata (CD) and Citrus microcarpa Bunge (CM), synonyms of Citrus deliciosa Ten and Citrus japonica Thunb, respectively. RESULTS: Gas chromatography-mass spectrometry analysis revealed that the main compounds in CD-EO were (R)-(+)-limonene (38.97%), γ-terpinene (24.39%) and linalool (6.22%), whereas, in CM-EO, the main compounds were (R)-(+)-limonene (48.00%), ß-pinene (13.60%) and γ-terpinene (12.07%). CD-EO exhibited inhibitory effects on the growth of common microorganisms, including Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. However, CM-EO showed only inhibitory effects on E. coli. Furthermore, CD-EO exhibited superior antioxidant potential, as demonstrated by its ability to eliminate 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate free radicals. Furthermore, CD-EO at a concentration of 100 µg mL-1 significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-induced cancer transformation in mouse epidermal JB6 P+ cells (P < 0.05), possibly by up-regulating protein expression of nuclear factor erythroid 2-related factor 2 and its downstream antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1 and UGT1A. CONCLUSION: These findings suggest that CD-EO exhibits inhibitory effects on pathogenic microorganisms, possesses antioxidant properties and has cancer chemopreventive potential. © 2024 Society of Chemical Industry.


Asunto(s)
Antiinfecciosos , Citrus , Monoterpenos Ciclohexánicos , Neoplasias , Aceites Volátiles , Animales , Ratones , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Limoneno/farmacología , Citrus/química , Escherichia coli , Antiinfecciosos/farmacología , Antiinfecciosos/química , Aceites de Plantas/química
2.
J Am Chem Soc ; 145(10): 5769-5777, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863033

RESUMEN

A series of novel surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids were for the first time prepared by a combined procedure of surface organometallic chemistry with post-synthetic ligand exchange for photocatalytic conversion of CO2 to CH4 with H2 as electron and proton donors under visible light irradiation. The selectivity toward CH4 increased to 93.4% by the ligand exchange of 4,4'-dimethyl-2,2'-bipyridine (4,4'-bpy) with the surface cyclopentadienyl (Cp)-RuH complex and the CO2 methanation activity was enhanced by 4.4-fold. An impressive rate of 241.2 µL·g-1·h-1 for CH4 production was achieved over the optimal photocatalyst. The femtosecond transient IR absorption results demonstrated that the hot electrons were fast injected in 0.9 ps from the photoexcited surface 4,4'-bpy-RuH complex into the conduction band of TiO2 nanoparticles to form a charge-separated state with an average lifetime of ca. 50.0 ns responsible for the CO2 methanation. The spectral characterizations indicated clearly that the formation of CO2•- radicals by single electron reduction of CO2 molecules adsorbed on surface oxygen vacancies of TiO2 nanoparticles was the most critical step for the methanation. Such radical intermediates were inserted into the explored Ru-H bond to generate Ru-OOCH species and finally CH4 and H2O in the presence of H2.

3.
Nanotechnology ; 34(23)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36877995

RESUMEN

In this work, ultrafast carrier dynamics of mechanically exfoliated 1T-TiSe2flakes from the high-quality single crystals with self-intercalated Ti atoms are investigated by femtosecond transient absorption spectroscopy. The observed coherent acoustic and optical phonon oscillations after ultrafast photoexcitation reveal the strong electron-phonon coupling in 1T-TiSe2. The ultrafast carrier dynamics probed in both visible and mid-infrared regions indicate that some photogenerated carriers localize near the intercalated Ti atoms and form small polarons rapidly within several picoseconds after photoexcitation due to the strong and short-range electron-phonon coupling. The formation of polarons leads to a reduction of carrier mobility and a long-time relaxation process of photoexcited carriers for several nanoseconds. The formation and dissociation rates of the photoinduced polarons are dependent on both the pump fluence and the thickness of TiSe2sample. This work offers new insights into the photogenerated carrier dynamics of 1T-TiSe2, and emphasizes the effects of intercalated atoms on the electron and lattice dynamics after photoexcitation.

4.
Nano Lett ; 22(21): 8755-8762, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36305523

RESUMEN

The excited state species and properties in low-dimensional semiconductors can be completely redefined by electron-lattice coupling or a polaronic effect. Here, by combining ultrafast broadband pump-probe spectroscopy and first-principles GW and Bethe-Salpeter equation calculations, we show semiconducting CrI3 as a prototypical 2D polaronic system with characteristic Jahn-Teller exciton polaron induced by symmetry breaking. A photogenerated electron and hole in CrI3 localize spontaneously in ∼0.9 ps and pair geminately to a Jahn-Teller exciton polaron with elongated Cr-I octahedra, large binding energy, and an unprecedentedly small exciton-exciton annihilation rate constant (∼10-20 cm3 s-1). Coherent phonon dynamics indicates the localization is mainly triggered by the coherent nuclear vibration of the I-Cr-I out-of-plane stretch mode at 128.5 ± 0.1 cm-1. The excited state Jahn-Teller exciton polaron in CrI3 broadens the realm of 2D polaron systems and reveals the decisive role of coupled electron-lattice motion on excited state properties and exciton physics in 2D semiconductors.

5.
Nanotechnology ; 31(23): 235712, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32097893

RESUMEN

Femtosecond transient absorption measurements have been performed to study the pump wavelength- and fluence-dependent hot carrier relaxation dynamics in monolayer MoS2. The relaxation process of the photoinduced carriers monitored within hundreds of femtoseconds after photoexcitation is demonstrated to be achieved through the carrier-phonon scattering mechanism. It is observed that an efficient hot-phonon effect can slow down the relaxation rate by around three times with the injected carrier density changing from 1 × 1012 to 3 × 1013 cm-2. A pronounced increase in the hot carrier relaxation time with decreasing temperature is further detected, which is attributed to the decreased phonon occupancy at lower temperature.

6.
J Chem Phys ; 151(11): 114704, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31542040

RESUMEN

By using femtosecond pump-probe spectroscopy with broadband detection from near-infrared to midinfrared, the carrier and phonon dynamics in few-layer 2H-MoTe2 after ultrafast excitation have been investigated in detail. Immediately following the photoexcitation, an ultrafast relaxation of the generated hot carriers by releasing phonons is observed within hundreds of femtoseconds. The subsequent electron-hole recombination with a time constant of ∼1.5 ps is clearly identified and demonstrated to be mediated through a defect-assisted process. Furthermore, we confirm that the observed redshift of the exciton resonance energy on longer time scales arises from the ultrafast thermalization of the 2H-MoTe2 lattice caused by the transfer of electronic excitation to the phonon system. As a result, the thermalization dynamics of the lattice within 2 ps and the following cooling process of the phonon system on the 100 ps time scale are directly monitored.

7.
Biochim Biophys Acta ; 1857(9): 1627-1640, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27372198

RESUMEN

While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding.


Asunto(s)
Fotosíntesis , Proteínas Bacterianas/química , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Ficobilisomas/química
8.
Acta Neurochir (Wien) ; 158(7): 1367-75, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27165300

RESUMEN

BACKGROUND: Multiple intracranial aneurysms (MIAs) are associated with poorer outcomes after rupture than are single intracranial aneurysms (SIAs). Although the risk factors for intracranial aneurysm rupture have been widely investigated, few studies have focused on MIAs. Thus, the present study aimed to determine whether there are differences in the patient and aneurysm characteristics between those with ruptured and unruptured anterior circulation MIAs (AC-MIAs). METHOD: The present study included 97 patients with AC-MIAs (58 ruptured, 39 unruptured). Data regarding patient characteristics, aneurysm location, mirror aneurysms (MirAns), and bleb formations were collected from medical records and angiography images. Three-dimensional (3D) geometries generated with a 3D Slicer were evaluated to determine the range of morphological parameters. A univariate analysis was conducted to identify significant differences between the groups and receiver-operating characteristic (ROC) analyses were performed for each morphological parameter. RESULTS: There are significantly fewer patients younger than 40 years of age in the ruptured group (P = 0.04); although the groups did not significantly differ with regard to smoking and hypertension, the ruptured group included significantly more current smokers who smoked more than 20 cigarettes per day (P = 0.025) and significantly more patients with a history of hypertension but an irregular use of anti-hypertensive medications (P = 0.043). Ruptured AC-MIAs were more likely to be located in the internal carotid artery (ICA) communicating artery (ICA C7) and anterior communicating artery (AComA; P = 0.000), to have formed a pair of MirAns (P = 0.001), and to have a bleb formation (P = 0.000). In terms of morphological parameters, the two groups differed significantly regarding aneurysm size (P = 0.000), neck width (P = 0.016), bottleneck factor (BNF; P = 0.000), height/width ratio (H/W; P = 0.031), aspect ratio (AR; P = 0.000) and size ratio (SR; P = 0.000). Additionally, the ROC analyses revealed that the optimal threshold size for rupture was 4.00 mm and that the SR had the highest area under the curve (AUC) value (0.826). CONCLUSIONS: The present study found that current smokers who smoked more than 20 cigarettes per day and those with hypertension but an irregular use of anti-hypertensive medications were more likely to suffer from rupture. Aneurysm location and bleb formation were closely related to the rupture of AC-MIAs, and SR was a better predictor of AC-MIAs rupture status than size, neck width, BNF, H/W and AR. These findings should be verified by future prospective follow-up studies of AC-MIAs.


Asunto(s)
Aneurisma Roto/epidemiología , Hipertensión/epidemiología , Aneurisma Intracraneal/epidemiología , Adulto , Anciano , Aneurisma Roto/diagnóstico por imagen , Antihipertensivos/efectos adversos , Antihipertensivos/uso terapéutico , Angiografía Cerebral , Femenino , Humanos , Hipertensión/tratamiento farmacológico , Aneurisma Intracraneal/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Fumar
9.
Angew Chem Int Ed Engl ; 55(8): 2759-63, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26799735

RESUMEN

We report the first highly efficient artificial light-harvesting systems based on nanocrystals of difluoroboron chromophores to mimic the chlorosomes, one of the most efficient light-harvesting systems found in green photosynthetic bacteria. Uniform nanocrystals with controlled donor/acceptor ratios were prepared by simple coassembly of the donors and acceptors in water. The light-harvesting system funneled the excitation energy collected by a thousand donor chromophores to a single acceptor. The well-defined spatial organization of individual chromophores in the nanocrystals enabled an energy transfer efficiency of 95 %, even at a donor/acceptor ratio as high as 1000:1, and a significant fluorescence of the acceptor was observed up to donor/acceptor ratios of 200 000:1.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Nanopartículas , Compuestos Orgánicos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
10.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517256

RESUMEN

Parametric superfluorescence (PSF), which originated from the optical amplification of vacuum quantum noise, is the primary noise source of femtosecond fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS). It severely affects the detection limit of FNOPAS to collect the femtosecond time-resolved spectra of extremely weak fluorescence. Here, we report the development of femtosecond fluorescence conical optical parametric amplification spectroscopy (FCOPAS), aimed at effectively suppressing the noise fluctuation from the PSF background. In contrast to traditional FNOPAS configurations utilizing lateral fluorescence collection and dot-like parametric amplification, FCOPAS employs an innovative conical fluorescence collection and ring-like amplification setup. This design enables effective cancellation of noise fluctuation across the entire PSF ring, resulting in an approximate order of magnitude reduction in PSF noise compared to prior FNOPAS outcomes. This advancement enables the resolution of transient fluorescence spectra of 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) dye molecules in ethanol, even at an optically dilute concentration of 10-6 mol/l, with significantly enhanced signal-to-noise ratios. This improvement will be significant for extremely weak fluorescence detection on the femtosecond time scale.

11.
JACS Au ; 4(8): 3310-3320, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39211624

RESUMEN

The stability of protein folded states is crucial for its function, yet the relationship with the protein sequence remains poorly understood. Prior studies have focused on the amino acid composition and thermodynamic couplings within a single folded conformation, overlooking the potential contribution of protein dynamics. Here, we address this gap by systematically analyzing the impact of alanine mutations in the C-terminal ß-strand (ß5) of ubiquitin, a model protein exhibiting millisecond timescale interconversion between two conformational states differing in the ß5 position. Our findings unveil a negative correlation between millisecond dynamics and thermal stability, with alanine substitutions at seemingly flexible C-terminal residues significantly enhancing thermostability. Integrating spectroscopic and computational approaches, we demonstrate that the thermally unfolded state retains a substantial secondary structure but lacks ß5 engagement, recapitulating the transition state for millisecond dynamics. Thus, alanine mutations that modulate the stabilities of the folded states with respect to the partially unfolded state impact both the dynamics and stability. Our findings underscore the importance of conformational dynamics with implications for protein engineering and design.

12.
Adv Mater ; 36(19): e2312676, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290714

RESUMEN

Broad-spectrum-driven high-performance artificial photosynthesis is quite challenging. Herein, atomically ultrathin bismuthene with semimetallic properties is designed and demonstrated for broad-spectrum (ultraviolet-visible-near infrared light) (UV-vis-NIR)-driven photocatalytic CO2 hydrogenation. The trap states in the bandgap produced by edge dangling bonds prolong the lifetime of the photogenerated electrons from 90 ps in bulk Bi to 1650 ps in bismuthine, and excited-state electrons are enriched at the edge of bismuthine. The edge dangling bonds of bismuthene as the active sites for adsorption/activation of CO2 increase the hybridization ability of the Bi 6p orbital and O 2p orbital to significantly reduce the catalytic reaction energy barrier and promote the formation of C─H bonds until the generation of CH4. Under λ ≥ 400 nm and λ ≥ 550 nm irradiation, the utilization ratios of photogenerated electron reduction CO2 hydrogenation to CO and CH4 for bismuthene are 58.24 and 300.50 times higher than those of bulk Bi, respectively. Moreover, bismuthene can extend the CO2 hydrogenation reaction to the near-infrared region (λ ≥ 700 nm). This pioneering work employs the single semimetal element as an artificial photosynthetic catalyst to produce a broad spectral response.

13.
J Phys Chem Lett ; 14(43): 9640-9645, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37870497

RESUMEN

Femtosecond helicity-resolved pump-probe spectroscopy is performed to study the spin and valley dynamics in monolayer (ML) MoS2. Both the bright to dark intravalley exciton transition (∼50 fs) and the reverse transition process (<50 fs) are directly monitored. It suggests that the bright exciton state of ML MoS2 is lower in energy than the dark one, which is also confirmed by observing the temperature-dependent co-polarized photobleaching dynamics of A and B excitons. Furthermore, the band splitting in the conduction band of ML MoS2 with a value of 15 ± 0.3 meV is determined by fitting the temperature-dependent ratios of the population in bright and dark states using the Boltzmann distribution law. Such minor band splitting allows the phonon-mediated intravalley spin-flip to even occur from the lower to the upper conduction band within tens of femtoseconds, which will have non-negligible effects on the performance of these ML MoS2-based optoelectronic and photonic devices.

14.
J Phys Chem Lett ; 14(20): 4657-4665, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37167104

RESUMEN

Due to the strong Coulomb interaction, the optical and electrical properties of two-dimensional transition metal dichalcogenides (TMDCs) are greatly determined by the emergence of many-body complexes such as excitons or trions. To fully realize the potential functionalities of these atomically thin materials, a comprehensive understanding of their many-body interaction mechanism is essential. Here, using the advanced femtosecond two-dimensional electronic spectroscopy technique combined with broadband transient absorption spectroscopy, a strong electron-exciton coupling effect in monolayer WSe2 following the ultrafast photoexcitation is revealed. We demonstrate that such many-body complexes can be generated effectively through the band-edge optical excitation, with a ∼1.5 ps stabilization process. The coherent optical phonon plays a dominant role in this electron-exciton interaction, and the coherence of the electron (exciton)-phonon coupling can last for ∼4.5 ps. This finding offers new insight into the formation mechanism of photoinduced many-body complexes in TMDCs.

15.
J Phys Chem Lett ; 12(1): 585-591, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33382603

RESUMEN

Using excitation-energy-scanning ultrafast infrared microspectroscopy, the excess energy-dependent hot carrier relaxation dynamics in atomically thin two-dimensional transition metal dichalcogenides (2D TMDs) after femtosecond photoexcitation was directly monitored. A good linear relationship between the carrier relaxation time and the excitation wavelength is observed for all measured monolayer (ML) and bilayer (BL) TMD samples, which allows us to determine their quasiparticle bandgaps as well as corresponding exciton binding energies. A carrier-optical-phonon scattering-mediated cascading-relaxation model is proposed, which can perfectly describe all the measured dynamics. As a consequence, the quasiparticle bandgaps of ML MoSe2, ML MoS2, BL MoSe2, and BL WSe2 are determined to be 2.07, 2.11, 1.67, and 1.81 eV, respectively. Our work reveals a general picture for the hot carrier relaxation dynamics in atomically thin TMDs and offers an effective experimental approach in probing the bandgaps of TMDs under ambient conditions.

16.
J Nanosci Nanotechnol ; 10(12): 8349-55, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21121338

RESUMEN

Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.

17.
Biophys J ; 97(10): 2811-9, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19917236

RESUMEN

The thermal stability of DsbC, a homodimeric protein disulfide isomerase in prokaryotic periplasm, has been studied by using temperature-dependent Fourier transformation infrared and time-resolved infrared spectroscopy coupled with temperature-jump initiation. The infrared absorbance thermal titration curves for thermal-induced unfolding of DsbC in D(2)O exhibit a three-state transition with the first transition midpoint temperature at 37.1 +/- 1.1 degrees C corresponding to dissociation, and the second at >74.5 degrees C corresponding to global unfolding and aggregation. The dissociation midpoint temperature of DsbC in phosphate buffer shifts to 49.2 +/- 0.7 degrees C. Temperature-jump time-resolved infrared spectra in D(2)O shows that DsbC dissociates into the corresponding germinate monomeric encounter pair with a time constant of 40 +/- 10 ns independent of the protein concentration and 77% of the newly formed monomeric encounter pair undergoes further coil to helix/loop transition with a time constant of 160 +/- 10 ns. The encounter pair is expected to proceed with further dissociation into monomers. The dissociation of DsbC is confirmed by size-exclusion chromatography and subunit hybridization. The in vivo oxidase activity of DsbC attributed to the monomer has also been observed by using cadmium sensitivity and the oxidative state of beta-lactamase.


Asunto(s)
Proteínas de Escherichia coli/química , Proteína Disulfuro Isomerasas/química , Cadmio/química , Cromatografía en Gel , Óxido de Deuterio/química , Escherichia coli , Proteínas de Escherichia coli/genética , Modelos Químicos , Modelos Moleculares , Oxidación-Reducción , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Factores de Tiempo , beta-Lactamasas/química
18.
Adv Mater ; 31(28): e1807576, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31081183

RESUMEN

Solar photocatalysis is a potential solution to satisfying energy demand and its resulting environmental impact. However, the low electron-hole separation efficiency in semiconductors has slowed the development of this technology. The effect of defects on electron-hole separation is not always clear. A model atomically thin structure of single-unit-cell Bi3 O4 Br nanosheets with surface defects is proposed to boost photocatalytic efficiency by simultaneously promoting bulk- and surface-charge separation. Defect-rich single-unit-cell Bi3 O4 Br displays 4.9 and 30.9 times enhanced photocatalytic hydrogen evolution and nitrogen fixation activity, respectively, than bulk Bi3 O4 Br. After the preparation of single-unit-cell structure, the bismuth defects are controlled to tune the oxygen defects. Benefiting from the unique single-unit-cell architecture and defects, the local atomic arrangement and electronic structure are tuned so as to greatly increase the charge separation efficiency and subsequently boost photocatalytic activity. This strategy provides an accessible pathway for next-generation photocatalysts.

19.
Nat Commun ; 10(1): 2840, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253761

RESUMEN

The design of efficient and stable photocatalysts for robust CO2 reduction without sacrifice reagent or extra photosensitizer is still challenging. Herein, a single-atom catalyst of isolated single atom cobalt incorporated into Bi3O4Br atomic layers is successfully prepared. The cobalt single atoms in the Bi3O4Br favors the charge transition, carrier separation, CO2 adsorption and activation. It can lower the CO2 activation energy barrier through stabilizing the COOH* intermediates and tune the rate-limiting step from the formation of adsorbed intermediate COOH* to be CO* desorption. Taking advantage of cobalt single atoms and two-dimensional ultrathin Bi3O4Br atomic layers, the optimized catalyst can perform light-driven CO2 reduction with a selective CO formation rate of 107.1 µmol g-1 h-1, roughly 4 and 32 times higher than that of atomic layer Bi3O4Br and bulk Bi3O4Br, respectively.

20.
ACS Nano ; 12(9): 8961-8969, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30114918

RESUMEN

Atomically thin two-dimensional materials have emerged as a promising system for optoelectronic applications; however, the low quantum yield, mainly caused by nonradiative energy dissipation, has greatly limited practical applications. To reveal the details for nonradiative energy channels, femtosecond pump-probe spectroscopy with a detection wavelength ranging from visible to near-infrared to mid-infrared is performed on few-layer MoS2. With this method, the many-body effects, occupation effects, and phonon dynamics are clearly identified. In particular, thermalization of the MoS2 lattice via electron-phonon scattering is responsible for a redshift of the exciton resonance energy observed within tens to hundreds of picoseconds after photoexcitation, which provides a direct real-time sensor for measuring the change in lattice temperature. We find that the excess energy from the cooling of hot carriers and the formation of bound carriers is efficiently transferred to the internal phonon system within 2 ps, while that from Shockley-Read-Hall recombination (∼9 ps) is mainly dissipated from the MoS2 surfaces to external phonons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA