Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Mol Genet ; 25(11): 2168-2181, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27005422

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal-recessive pediatric neurodegenerative disease characterized by selective loss of spinal motor neurons. It is caused by mutation in the survival of motor neuron 1, SMN1, gene and leads to loss of function of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that are involved in post-transcriptional regulation of gene expression. Prior studies have implicated miRNAs in the pathogenesis of motor neuron disease. We hypothesized that motor neuron-specific miRNA expression changes are involved in their selective vulnerability in SMA. Therefore, we sought to determine the effect of SMN loss on miRNAs and their target mRNAs in spinal motor neurons. We used microarray and RNAseq to profile both miRNA and mRNA expression in primary spinal motor neuron cultures after acute SMN knockdown. By integrating the miRNA:mRNA profiles, a number of dysregulated miRNAs were identified with enrichment in differentially expressed putative mRNA targets. miR-431 expression was highly increased, and a number of its putative mRNA targets were significantly downregulated in motor neurons after SMN loss. Further, we found that miR-431 regulates motor neuron neurite length by targeting several molecules previously identified to play a role in motor neuron axon outgrowth, including chondrolectin. Together, our findings indicate that cell-type-specific dysregulation of miR-431 plays a role in the SMA motor neuron phenotype.


Asunto(s)
MicroARNs/genética , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , Análisis por Micromatrices , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/fisiopatología , Neuritas/metabolismo , Neuritas/patología
2.
Hum Mol Genet ; 23(23): 6318-31, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25055867

RESUMEN

Reduced expression of SMN protein causes spinal muscular atrophy (SMA), a neurodegenerative disorder leading to motor neuron dysfunction and loss. However, the molecular mechanisms by which SMN regulates neuronal dysfunction are not fully understood. Here, we report that reduced SMN protein level alters miRNA expression and distribution in neurons. In particular, miR-183 levels are increased in neurites of SMN-deficient neurons. We demonstrate that miR-183 regulates translation of mTor via direct binding to its 3' UTR. Interestingly, local axonal translation of mTor is reduced in SMN-deficient neurons, and this can be recovered by miR-183 inhibition. Finally, inhibition of miR-183 expression in the spinal cord of an SMA mouse model prolongs survival and improves motor function of Smn-mutant mice. Together, these observations suggest that axonal miRNAs and the mTOR pathway are previously unidentified molecular mechanisms contributing to SMA pathology.


Asunto(s)
Axones/metabolismo , MicroARNs/metabolismo , Biosíntesis de Proteínas , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Serina-Treonina Quinasas TOR/biosíntesis , Regiones no Traducidas 3' , Animales , MicroARNs/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Neuronas/metabolismo , Cultivo Primario de Células , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Serina-Treonina Quinasas TOR/genética
3.
Hum Mol Genet ; 23(14): 3865-74, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24599401

RESUMEN

Tuberous sclerosis complex (TSC) is a disorder arising from mutation in the TSC1 or TSC2 gene, characterized by the development of hamartomas in various organs and neurological manifestations including epilepsy, intellectual disability and autism. TSC1/2 protein complex negatively regulates the mammalian target of rapamycin complex 1 (mTORC1) a master regulator of protein synthesis, cell growth and autophagy. Autophagy is a cellular quality-control process that sequesters cytosolic material in double membrane vesicles called autophagosomes and degrades it in autolysosomes. Previous studies in dividing cells have shown that mTORC1 blocks autophagy through inhibition of Unc-51-like-kinase1/2 (ULK1/2). Despite the fact that autophagy plays critical roles in neuronal homeostasis, little is known on the regulation of autophagy in neurons. Here we show that unlike in non-neuronal cells, Tsc2-deficient neurons have increased autolysosome accumulation and autophagic flux despite mTORC1-dependent inhibition of ULK1. Our data demonstrate that loss of Tsc2 results in autophagic activity via AMPK-dependent activation of ULK1. Thus, in Tsc2-knockdown neurons AMPK activation is the dominant regulator of autophagy. Notably, increased AMPK activity and autophagy activation are also found in the brains of Tsc1-conditional mouse models and in cortical tubers resected from TSC patients. Together, our findings indicate that neuronal Tsc1/2 complex activity is required for the coordinated regulation of autophagy by AMPK. By uncovering the autophagy dysfunction associated with Tsc2 loss in neurons, our work sheds light on a previously uncharacterized cellular mechanism that contributes to altered neuronal homeostasis in TSC disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esclerosis Tuberosa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Células HEK293 , Hipocampo/citología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/metabolismo , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
4.
Nat Cell Biol ; 9(7): 755-64, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17576410

RESUMEN

BACE1 activity is significantly increased in the brains of Alzheimer's disease patients, potentially contributing to neurodegeneration. The voltage-gated sodium channel (Na(v)1) beta2-subunit (beta2), a type I membrane protein that covalently binds to Na(v)1 alpha-subunits, is a substrate for BACE1 and gamma-secretase. Here, we find that BACE1-gamma-secretase cleavages release the intracellular domain of beta2, which increases mRNA and protein levels of the pore-forming Na(v)1.1 alpha-subunit in neuroblastoma cells. Similarly, endogenous beta2 processing and Na(v)1.1 protein levels are elevated in brains of BACE1-transgenic mice and Alzheimer's disease patients with high BACE1 levels. However, Na(v)1.1 is retained inside the cells and cell surface expression of the Na(v)1 alpha-subunits and sodium current densities are markedly reduced in both neuroblastoma cells and adult hippocampal neurons from BACE1-transgenic mice. BACE1, by cleaving beta2, thus regulates Na(v)1 alpha-subunit levels and controls cell-surface sodium current densities. BACE1 inhibitors may normalize membrane excitability in Alzheimer's disease patients with elevated BACE1 activity.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Ácido Aspártico Endopeptidasas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Canales de Sodio/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Línea Celular Tumoral , Membrana Celular/metabolismo , Hipocampo/citología , Humanos , Activación del Canal Iónico , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1 , Neuroblastoma , Neuronas/metabolismo , Técnicas de Placa-Clamp , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Ratas
5.
Proc Natl Acad Sci U S A ; 108(25): 10337-42, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21652774

RESUMEN

Spinal muscular atrophy (SMA), caused by the deletion of the SMN1 gene, is the leading genetic cause of infant mortality. SMN protein is present at high levels in both axons and growth cones, and loss of its function disrupts axonal extension and pathfinding. SMN is known to associate with the RNA-binding protein hnRNP-R, and together they are responsible for the transport and/or local translation of ß-actin mRNA in the growth cones of motor neurons. However, the full complement of SMN-interacting proteins in neurons remains unknown. Here we used mass spectrometry to identify HuD as a novel neuronal SMN-interacting partner. HuD is a neuron-specific RNA-binding protein that interacts with mRNAs, including candidate plasticity-related gene 15 (cpg15). We show that SMN and HuD form a complex in spinal motor axons, and that both interact with cpg15 mRNA in neurons. CPG15 is highly expressed in the developing ventral spinal cord and can promote motor axon branching and neuromuscular synapse formation, suggesting a crucial role in the development of motor axons and neuromuscular junctions. Cpg15 mRNA previously has been shown to localize into axonal processes. Here we show that SMN deficiency reduces cpg15 mRNA levels in neurons, and, more importantly, cpg15 overexpression partially rescues the SMN-deficiency phenotype in zebrafish. Our results provide insight into the function of SMN protein in axons and also identify potential targets for the study of mechanisms that lead to the SMA pathology and related neuromuscular diseases.


Asunto(s)
Axones/metabolismo , Axones/patología , Proteínas ELAV/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , ARN Mensajero/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Proteínas ELAV/genética , Proteína 4 Similar a ELAV , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Ratones , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Pez Cebra/embriología , Pez Cebra/fisiología
6.
Neurodegener Dis ; 13(2-3): 64-68, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24217025

RESUMEN

BACKGROUND: Familial Alzheimer's disease (FAD) mutations in presenilin (PS) modulate PS/γ-secretase activity and therefore contribute to AD pathogenesis. Previously, we found that PS/γ-secretase cleaves voltage-gated sodium channel ß2-subunits (Navß2), releases the intracellular domain of Navß2 (ß2-ICD), and thereby, increases intracellular sodium channel α-subunit Nav1.1 levels. Here, we tested whether FAD-linked PS1 mutations modulate Navß2 cleavages and Nav1.1 levels. OBJECTIVE: It was the aim of this study to analyze the effects of PS1-linked FAD mutations on Navß2 processing and Nav1.1 levels in neuronal cells. METHODS: We first generated B104 rat neuroblastoma cells stably expressing Navß2 and wild-type PS1 (wtPS1), PS1 with one of three FAD mutations (E280A, M146L or ΔE9), or PS1 with a non-FAD mutation (D333G). Navß2 processing and Nav1.1 protein and mRNA levels were then analyzed by Western blot and real-time RT-PCR, respectively. RESULTS: The FAD-linked E280A mutation significantly decreased PS/γ-secretase-mediated processing of Navß2 as compared to wtPS1 controls, both in cells and in a cell-free system. Nav1.1 mRNA and protein levels, as well as the surface levels of Nav channel α-subunits, were also significantly reduced in PS1(E280A) cells. CONCLUSION: Our data indicate that the FAD-linked PS1(E280A) mutation decreases Nav channel levels by partially inhibiting the PS/γ-secretase-mediated cleavage of Navß2 in neuronal cells.


Asunto(s)
Mutación , Neuronas/metabolismo , Presenilinas/genética , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Western Blotting , Células Cultivadas , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
7.
Mol Neurodegener ; 15(1): 29, 2020 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448329

RESUMEN

Huntington's disease (HD) is an incurable neurodegenerative disorder caused by CAG trinucleotide expansions in the huntingtin gene. Markers of both systemic and CNS immune activation and inflammation have been widely noted in HD and mouse models of HD. In particular, elevation of the pro-inflammatory cytokine interleukin-6 (IL-6) is the earliest reported marker of immune activation in HD, and this elevation has been suggested to contribute to HD pathogenesis. To test the hypothesis that IL-6 deficiency would be protective against the effects of mutant huntingtin, we generated R6/2 HD model mice that lacked IL-6. Contrary to our prediction, IL-6 deficiency exacerbated HD-model associated behavioral phenotypes. Single nuclear RNA Sequencing (snRNA-seq) analysis of striatal cell types revealed that IL-6 deficiency led to the dysregulation of various genes associated with synaptic function, as well as the BDNF receptor Ntrk2. These data suggest that IL-6 deficiency exacerbates the effects of mutant huntingtin through dysregulation of genes of known relevance to HD pathobiology in striatal neurons, and further suggest that modulation of IL-6 to a level that promotes proper regulation of genes associated with synaptic function may hold promise as an HD therapeutic target.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Huntington/metabolismo , Interleucina-6/deficiencia , Fenotipo , Animales , Encéfalo/fisiopatología , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Interleucina-6/metabolismo , Ratones Transgénicos
8.
Neuron ; 106(1): 76-89.e8, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32004439

RESUMEN

Unbiased in vivo genome-wide genetic screening is a powerful approach to elucidate new molecular mechanisms, but such screening has not been possible to perform in the mammalian central nervous system (CNS). Here, we report the results of the first genome-wide genetic screens in the CNS using both short hairpin RNA (shRNA) and CRISPR libraries. Our screens identify many classes of CNS neuronal essential genes and demonstrate that CNS neurons are particularly sensitive not only to perturbations to synaptic processes but also autophagy, proteostasis, mRNA processing, and mitochondrial function. These results reveal a molecular logic for the common implication of these pathways across multiple neurodegenerative diseases. To further identify disease-relevant genetic modifiers, we applied our screening approach to two mouse models of Huntington's disease (HD). Top mutant huntingtin toxicity modifier genes included several Nme genes and several genes involved in methylation-dependent chromatin silencing and dopamine signaling, results that reveal new HD therapeutic target pathways.


Asunto(s)
Supervivencia Celular/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Neostriado/metabolismo , Neuronas/metabolismo , Animales , Conducta Animal , Sistemas CRISPR-Cas , Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Genes Esenciales/genética , Ratones , Ratones Transgénicos , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasa D/genética , Agregado de Proteínas , Interferencia de ARN , ARN Guía de Kinetoplastida , ARN Interferente Pequeño , Receptores de Dopamina D2/genética , Análisis de Secuencia de ARN
9.
Ann N Y Acad Sci ; 1366(1): 5-19, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26173388

RESUMEN

Spinal muscular atrophy is an autosomal-recessive pediatric neurodegenerative disease characterized by loss of spinal motor neurons. It is caused by mutation in the gene survival of motor neuron 1 (SMN1), leading to loss of function of the full-length SMN protein. SMN has a number of functions in neurons, including RNA splicing and snRNP biogenesis in the nucleus, and RNA trafficking in neurites. The expression level of full-length SMN protein from the SMN2 locus modifies disease severity. Increasing full-length SMN protein by a small amount can lead to significant improvements in the neurological phenotype. Currently available interventions for spinal muscular atrophy patients are physical therapy and orthopedic, nutritional, and pulmonary interventions; these are palliative or supportive measures and do not address the etiology of the disease. In the past decade, there has been a push for developing therapeutics to improve motor phenotypes and increase life span of spinal muscular atrophy patients. These therapies are aimed primarily at restoration of full-length SMN protein levels, but other neuroprotective treatments have been investigated as well. Here, we discuss recent advances in basic and clinical studies toward finding safe and effective treatments of spinal muscular atrophy using gene therapy, antisense oligonucleotides, and other small molecule modulators of SMN expression.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Terapia Genética/métodos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Fármacos Neuroprotectores/administración & dosificación , Proteínas Nucleares/genética , Animales , Ensayos Clínicos como Asunto/métodos , Enzimas Reparadoras del ADN/biosíntesis , Exodesoxirribonucleasas , Terapia Genética/tendencias , Inhibidores de Histona Desacetilasas/administración & dosificación , Humanos , Atrofia Muscular Espinal/metabolismo , Proteínas Nucleares/biosíntesis , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética
10.
Mol Autism ; 5(1): 16, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24564913

RESUMEN

BACKGROUND: Fragile X syndrome and tuberous sclerosis are genetic syndromes that both have a high rate of comorbidity with autism spectrum disorder (ASD). Several lines of evidence suggest that these two monogenic disorders may converge at a molecular level through the dysfunction of activity-dependent synaptic plasticity. METHODS: To explore the characteristics of transcriptomic changes in these monogenic disorders, we profiled genome-wide gene expression levels in cerebellum and blood from murine models of fragile X syndrome and tuberous sclerosis. RESULTS: Differentially expressed genes and enriched pathways were distinct for the two murine models examined, with the exception of immune response-related pathways. In the cerebellum of the Fmr1 knockout (Fmr1-KO) model, the neuroactive ligand receptor interaction pathway and gene sets associated with synaptic plasticity such as long-term potentiation, gap junction, and axon guidance were the most significantly perturbed pathways. The phosphatidylinositol signaling pathway was significantly dysregulated in both cerebellum and blood of Fmr1-KO mice. In Tsc2 heterozygous (+/-) mice, immune system-related pathways, genes encoding ribosomal proteins, and glycolipid metabolism pathways were significantly changed in both tissues. CONCLUSIONS: Our data suggest that distinct molecular pathways may be involved in ASD with known but different genetic causes and that blood gene expression profiles of Fmr1-KO and Tsc2+/- mice mirror some, but not all, of the perturbed molecular pathways in the brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA