Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Manipulative Physiol Ther ; 45(1): 20-32, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35760595

RESUMEN

OBJECTIVES: The purpose of this preliminary study was to determine the influence of thoracic spinal manipulation therapy (SMT) of different force magnitudes on blood biomarkers of inflammation in healthy adults. METHODS: Nineteen healthy young adults (10 female, age: 25.6 ± 1.2 years) were randomized into the following 3 groups: (1) control (preload only), (2) single thoracic SMT with a total peak force of 400N, and (3) single thoracic SMT with a total peak force of 800N. SMT was performed by an experienced chiropractor, and a force-plate embedded treatment table (Force Sensing Table Technology) was used to determine the SMT force magnitudes applied. Blood samples were collected at pre intervention (baseline), immediately post intervention, and 20 minutes post intervention. A laboratory panel of 14 different inflammatory biomarkers (pro, anti, dual role, chemokine, and growth factor) was assessed by multiplex array. Change scores from baseline of each biomarker was used for statistical analysis. Two-way repeated-measures analysis of variance was used to investigate the interaction and main effects of intervention and time on cytokines, followed by Tukey's multiple comparison test (P ≤ .05). RESULTS: A between-group (800N vs 400N) difference was observed on interferon-gamma, interleukin (IL)-5, and IL-6, while a within-group difference (800N: immediately vs 20 minutes post-intervention) was observed on IL-6 only. CONCLUSION: In this study, we measured short-term changes in plasma cytokines in healthy young adults and found that select plasma pro-inflammatory and dual-role cytokines were elevated by higher compared to lower SMT force. Our findings aid to advance our understanding of the potential relationship between SMT force magnitude and blood cytokines and provide a healthy baseline group with which to compare similar studies in clinical populations in the future.


Asunto(s)
Interleucina-6 , Manipulación Espinal , Adulto , Biomarcadores , Citocinas , Femenino , Humanos , Inflamación , Adulto Joven
2.
J Nutr ; 151(11): 3350-3360, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34486662

RESUMEN

BACKGROUND: Acute exercise increases the incorporation of dietary amino acids into de novo myofibrillar proteins after a single meal in controlled laboratory studies in males. It is unclear whether this extends to free-living settings or is influenced by training or sex. OBJECTIVES: We determined the effects of exercise, training status, and sex on 24-hour free-living dietary phenylalanine incorporation into skeletal muscle proteins. METHODS: In a parallel group design, recreationally active males (mean ± SD age, 23 ± 3 years;  BMI. 23.4 ± 2.9 kg/m2; n = 10) and females (age 24 ± 5 years;  BMI, 23.1 ± 3.9 kg/m2; n = 9) underwent 8 weeks of whole-body resistance exercise 3 times a week. Controlled diets containing 1.6 g/kg-1/d-1 (amino acids modelled after egg), enriched to 10% with [13C6] or [2H5]phenylalanine, were consumed before and after an acute bout of resistance exercise. Fasted muscle biopsies were obtained before [untrained, pre-exercise condition (REST ] and 24 hours after an acute bout of resistance exercise in untrained (UT) and trained (T) states to determine dietary phenylalanine incorporation into myofibrillar (ΔMyo) and sarcoplasmic (ΔSarc) proteins, intracellular mechanistic target of rapamycin (mTOR) colocalization with ulex europaeus agglutinin-1 (UEA-1; capillary marker; immunofluorescence), and amino acid transporter expression (Western blotting). RESULTS: The ΔMyo values were ∼62% greater (P < 0.01) in females than males at REST. The ΔMyo values increased above REST by ∼51% during UT and ∼30% in T (both P < 0.01) in males, remained unchanged in females during UT, and were ∼33% lower at T when compared to UT (P = 0.013). Irrespective of sex, ΔMyo and ΔSarc were decreased at T compared to UT (P ≤ 0.026). Resistance training increased mTOR colocalization with UEA-1 (P = 0.004), while L amino acid transporter 1, which was greater in males (P < 0.01), and sodium-coupled neutral amino acid transporter 2 protein expression were not affected by acute exercise (P ≥ 0.33) or training (P ≥ 0.45). CONCLUSIONS: The exercise-induced incorporation of dietary phenylalanine into myofibrillar and sarcoplasmic proteins is attenuated after training regardless of sex, suggesting a reduced reliance on dietary amino acids for postexercise skeletal muscle remodeling in the T state.


Asunto(s)
Entrenamiento de Fuerza , Adulto , Aminoácidos , Dieta , Proteínas en la Dieta , Ejercicio Físico , Femenino , Humanos , Masculino , Proteínas Musculares , Músculo Esquelético , Adulto Joven
3.
Exp Physiol ; 106(3): 714-725, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486778

RESUMEN

NEW FINDINGS: What is the central question of this study? The extent to which genetics determines adaptation to endurance versus resistance exercise is unclear. Previously, a divergent selective breeding rat model showed that genetic factors play a major role in the response to aerobic training. Here, we asked: do genetic factors that underpin poor adaptation to endurance training affect adaptation to functional overload? What is the main finding and its importance? Our data show that heritable factors in low responders to endurance training generated differential gene expression that was associated with impaired skeletal muscle hypertrophy. A maladaptive genotype to endurance exercise appears to dysregulate biological processes responsible for mediating exercise adaptation, irrespective of the mode of contraction stimulus. ABSTRACT: Divergent skeletal muscle phenotypes result from chronic resistance-type versus endurance-type contraction, reflecting the principle of training specificity. Our aim was to determine whether there is a common set of genetic factors that influence skeletal muscle adaptation to divergent contractile stimuli. Female rats were obtained from a genetically heterogeneous rat population and were selectively bred from high responders to endurance training (HRT) or low responders to endurance training (LRT; n = 6/group; generation 19). Both groups underwent 14 days of synergist ablation to induce functional overload of the plantaris muscle before comparison to non-overloaded controls of the same phenotype. RNA sequencing was performed to identify Gene Ontology biological processes with differential (LRT vs. HRT) gene set enrichment. We found that running distance, determined in advance of synergist ablation, increased in response to aerobic training in HRT but not LRT (65 ± 26 vs. -6 ± 18%, mean ± SD, P < 0.0001). The hypertrophy response to functional overload was attenuated in LRT versus HRT (20.1 ± 5.6 vs. 41.6 ± 16.1%, P = 0.015). Between-group differences were observed in the magnitude of response of 96 upregulated and 101 downregulated pathways. A further 27 pathways showed contrasting upregulation or downregulation in LRT versus HRT in response to functional overload. In conclusion, low responders to aerobic endurance training were also low responders for compensatory hypertrophy, and attenuated hypertrophy was associated with differential gene set regulation. Our findings suggest that genetic factors that underpin aerobic training maladaptation might also dysregulate the transcriptional regulation of biological processes that contribute to adaptation to mechanical overload.


Asunto(s)
Entrenamiento Aeróbico , Condicionamiento Físico Animal , Adaptación Fisiológica/fisiología , Animales , Femenino , Humanos , Hipertrofia/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Resistencia Física , Ratas
4.
Curr Rheumatol Rep ; 23(8): 69, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236529

RESUMEN

PURPOSE OF REVIEW: We discuss the need for a mechanism-based diagnostic framework with a focus on the development of objective measures (e.g., biomarkers) that can potentially be added to the diagnostic criteria of the syndrome. Potential biomarkers are discussed in relation to current knowledge on the pathophysiology of myofascial pain syndrome (MPS), including alterations in redox status, inflammation, and the myofascial trigger point (MTrP) biochemical milieu, as well as imaging and neurophysiological outcomes. Finally, we discuss the long-term goal of conducting a Delphi survey, to assess the influence of putative MPS biomarkers on clinician opinion, in order to ultimately develop new criteria for the diagnosis of MPS. RECENT FINDINGS: Myofascial pain syndrome (MPS) is a prevalent healthcare condition associated with muscle weakness, impaired mood, and reduced quality of life. MPS is characterized by the presence of myofascial trigger points (MTrPs): stiff and discrete nodules located within taut bands of skeletal muscle that are painful upon palpation. However, physical examination of MTrPs often yields inconsistent results, and there is no gold standard by which to diagnose MPS. The current MPS diagnostic paradigm has an inherent subjectivity and the absence of correlation with the underlying pathophysiology. Recent advancements in ultrasound imaging, systemic biomarkers, MTrP-specific biomarkers, and the assessment of dysfunction in the somatosensorial system may all contribute to improved diagnostic effectiveness of MPS.


Asunto(s)
Fibromialgia , Síndromes del Dolor Miofascial , Biomarcadores , Fibromialgia/diagnóstico , Humanos , Músculo Esquelético , Síndromes del Dolor Miofascial/diagnóstico , Calidad de Vida , Puntos Disparadores
5.
J Nutr ; 150(3): 505-511, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31618421

RESUMEN

BACKGROUND: Dietary protein supports resistance exercise-induced anabolism primarily via the stimulation of protein synthesis rates. The indicator amino acid oxidation (IAAO) technique provides a noninvasive estimate of the protein intake that maximizes whole-body protein synthesis rates and net protein balance. OBJECTIVE: We utilized IAAO to determine the maximal anabolic response to postexercise protein ingestion in resistance-trained men. METHODS: Seven resistance-trained men (mean ± SD age 24 ± 3 y; weight 80 ± 9 kg; 11 ± 5% body fat; habitual protein intake 2.3 ± 0.6 g·kg-1·d-1) performed a bout of whole-body resistance exercise prior to ingesting hourly mixed meals, which provided a variable amount of protein (0.20-3.00 g·kg-1·d-1) as crystalline amino acids modeled after egg protein. Steady-state protein kinetics were modeled with oral l-[1-13C]-phenylalanine. Breath and urine samples were taken at isotopic steady state to determine phenylalanine flux (PheRa), phenylalanine excretion (F13CO2; reciprocal of protein synthesis), and net balance (protein synthesis - PheRa). Total amino acid oxidation was estimated from the ratio of urinary urea and creatinine. RESULTS: Mixed model biphasic linear regression revealed a plateau in F13CO2 (mean: 2.00; 95% CI: 1.62, 2.38 g protein·kg-1·d-1) (r2 = 0.64; P Ë‚ 0.01) and in net balance (mean: 2.01; 95% CI: 1.44, 2.57 g protein·kg-1·d-1) (r2 = 0.63; P Ë‚ 0.01). Ratios of urinary urea and creatinine concentrations increased linearly (r = 0.84; P Ë‚ 0.01) across the range of protein intakes. CONCLUSIONS: A breakpoint protein intake of ∼2.0 g·kg-1·d-1, which maximized whole-body anabolism in resistance-trained men after exercise, is greater than previous IAAO-derived estimates for nonexercising men and is at the upper range of current general protein recommendations for athletes. The capacity to enhance whole-body net balance may be greater than previously suggested to maximize muscle protein synthesis in resistance-trained athletes accustomed to a high habitual protein intake. This trial was registered at clinicaltrials.gov as NCT03696264.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Ejercicio Físico , Metabolismo , Ingesta Diaria Recomendada , Entrenamiento de Fuerza , Adulto , Pruebas Respiratorias , Creatinina/orina , Humanos , Masculino , Fenilalanina/análisis , Fenilalanina/orina , Urea/orina , Adulto Joven
6.
Am J Physiol Cell Physiol ; 317(6): C1061-C1078, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31461340

RESUMEN

Skeletal muscle mass, a strong predictor of longevity and health in humans, is determined by the balance of two cellular processes, muscle protein synthesis (MPS) and muscle protein breakdown. MPS seems to be particularly sensitive to changes in mechanical load and/or nutritional status; therefore, much research has focused on understanding the molecular mechanisms that underpin this cellular process. Furthermore, older individuals display an attenuated MPS response to anabolic stimuli, termed anabolic resistance, which has a negative impact on muscle mass and function, as well as quality of life. Therefore, an understanding of which, if any, molecular mechanisms contribute to anabolic resistance of MPS is of vital importance in formulation of therapeutic interventions for such populations. This review summarizes the current knowledge of the mechanisms that underpin MPS, which are broadly divided into mechanistic target of rapamycin complex 1 (mTORC1)-dependent, mTORC1-independent, and ribosomal biogenesis-related, and describes the evidence that shows how they are regulated by anabolic stimuli (exercise and/or nutrition) in healthy human skeletal muscle. This review also summarizes evidence regarding which of these mechanisms may be implicated in age-related skeletal muscle anabolic resistance and provides recommendations for future avenues of research that can expand our knowledge of this area.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Longevidad/efectos de los fármacos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas , Proteínas en la Dieta/metabolismo , Regulación de la Expresión Génica , Humanos , Longevidad/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Nutrientes/administración & dosificación , Nutrientes/metabolismo , Estado Nutricional/fisiología , Proteolisis , Calidad de Vida , Entrenamiento de Fuerza , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transducción de Señal
7.
Am J Physiol Cell Physiol ; 315(4): C537-C543, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133322

RESUMEN

We have recently demonstrated that whole egg ingestion induces a greater muscle protein synthetic (MPS) response when compared with isonitrogenous egg white ingestion after resistance exercise in young men. Our aim was to determine whether whole egg or egg white ingestion differentially influenced colocalization of key regulators of mechanistic target of rapamycin complex 1 (mTORC1) as means to explain our previously observed divergent postexercise MPS response. In crossover trials, 10 healthy resistance-trained men (21 ± 1 yr; 88 ± 3 kg; body fat: 16 ± 1%; means ± SE) completed lower body resistance exercise before ingesting whole eggs (18 g protein, 17 g fat) or egg whites (18 g protein, 0 g fat). Muscle biopsies were obtained before exercise and at 120 and 300 min after egg ingestion to assess, by immunofluorescence, protein colocalization of key anabolic signaling molecules. After resistance exercise, tuberous sclerosis 2-Ras homolog enriched in brain (Rheb) colocalization decreased ( P < 0.01) at 120 and 300 min after whole egg and egg white ingestion with concomitant increases ( P < 0.01) in mTOR-Rheb colocalization. After resistance exercise, mTOR-lysosome-associated membrane protein 2 (LAMP2) colocalization significantly increased at 120 and 300 min only after whole egg ingestion ( P < 0.01), and mTOR-LAMP2 colocalization correlated with rates of MPS at rest and after exercise ( r = 0.40, P < 0.05). We demonstrated that the greater postexercise MPS response with whole egg ingestion is related in part to an enhanced recruitment of mTORC1-Rheb complexes to the lysosome during recovery. These data suggest nonprotein dietary factors influence the postexercise regulation of mRNA translation in human skeletal muscle.


Asunto(s)
Proteínas del Huevo/metabolismo , Ejercicio Físico/fisiología , Lisosomas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Animales , Proteínas en la Dieta/metabolismo , Ingestión de Alimentos/fisiología , Huevos , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Masculino , Ratones , Proteínas Musculares/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Entrenamiento de Fuerza/métodos , Adulto Joven
8.
J Physiol ; 596(14): 2883-2900, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29726007

RESUMEN

KEY POINTS: Force transfer is integral for maintaining skeletal muscle structure and function. One important component is dystrophin. There is limited understanding of how force transfer is impacted by age and loading. Here, we investigate the force transfer apparatus in muscles of adult and old rats exposed to periods of disuse and reloading. Our results demonstrate an increase in dystrophin protein during the reloading phase in the adult tibialis anterior muscle that is delayed in the old muscle. The consequence of this delay is an increased susceptibility towards contraction-induced muscle injury. Central to the lack of dystrophin protein is an increase in miR-31, a microRNA that inhibits dystrophin translation. In vivo electroporation with a miR-31 sponge led to increased dystrophin protein and decreased contraction-induced muscle injury in old skeletal muscle. Overall, our results detail the importance of the force transfer apparatus and provide new mechanisms for contraction-induced injury in ageing skeletal muscle. ABSTRACT: In healthy muscle, the dystrophin-associated glycoprotein complex (DGC), the integrin/focal adhesion complex, intermediate filaments and Z-line proteins transmit force from the contractile proteins to the extracellular matrix. How loading and age affect these proteins is poorly understood. The experiments reported here sought to determine the effect of ageing on the force transfer apparatus following muscle unloading and reloading. Adult (9 months) and old (28 months) rats were subjected to 14 days of hindlimb unloading and 1, 3, 7 and 14 days of reloading. The DGC complex, intermediate filament and Z-line protein and mRNA levels, as well as dystrophin-targeting miRNAs (miR-31, -146b and -374) were examined in the tibialis anterior (TA) and medial gastrocnemius muscles at both ages. There was a significant increase in dystrophin protein levels (2.79-fold) upon 3 days of reloading in the adult TA muscle that did not occur in the old rats (P ≤ 0.05), and the rise in dystrophin protein occurred independent of dystrophin mRNA. The disconnect between dystrophin protein and mRNA levels can partially be explained by age-dependent differences in miR-31. The impaired dystrophin response in aged muscle was followed by an increase in other force transfer proteins (ß-dystroglycan, desmuslin and LIM) that was not sufficient to prevent membrane disruption and muscle injury early in the reloading period. Inserting a miR-31 sponge increased dystrophin protein and decreased contraction-induced injury in the TA (P ≤ 0.05). Collectively, these data suggest that increased miR-31 with age contributes to an impaired dystrophin response and increased muscle injury after disuse.


Asunto(s)
Distrofina/metabolismo , Regulación de la Expresión Génica , Suspensión Trasera/fisiología , Mecanotransducción Celular , MicroARNs/genética , Contracción Muscular , Músculo Esquelético/fisiología , Envejecimiento , Animales , Distrofina/genética , Masculino , Atrofia Muscular/fisiopatología , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344
9.
Amino Acids ; 50(12): 1679-1684, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30145710

RESUMEN

The increased protein requirement of endurance athletes may be related to the need to replace exercise-induced oxidative losses, especially of the branched-chain amino acids (BCAA). However, it is unknown if non-essential amino acids (NEAA) influence the requirement for essential amino acids (EAA) during post-exercise recovery. Seven endurance-trained males ran 20 km prior to consuming [13C]phenylalanine, sufficient energy, and: (1) deficient protein (BASE); (2) BASE supplemented with sufficient BCAA (BCAAsup); (3) an equivalent EAA intake as BCAA (LowEAA), and; (4) sufficient EAA intake (HighEAA). [13C]Phenylalanine oxidation (the reciprocal of protein synthesis) for BCAAsup and HighEAA (0.54 ± 0.15, 0.49 ± 0.11 µmol kg-1 h-1; Mean ± SD) were significantly lower than BASE (0.74 ± 0.14 µmol kg-1 h-1; P < 0.01 for both) and LowEAA (0.70 ± 0.11 µmol kg-1 h-1; P < 0.05 and 0.01, respectively). Our results suggest that exogenous NEAA are dispensable for whole-body protein synthesis during recovery from endurance exercise provided sufficient EAA are consumed. Endurance athletes who may be at risk of not meeting their elevated protein requirements should prioritize the intake of EAA-enriched foods and/or supplements.


Asunto(s)
Aminoácidos Esenciales/metabolismo , Proteínas en la Dieta/metabolismo , Entrenamiento Aeróbico , Necesidades Nutricionales , Resistencia Física , Biosíntesis de Proteínas , Adulto , Aminoácidos Esenciales/administración & dosificación , Atletas , Suplementos Dietéticos , Alimentos Fortificados , Humanos , Masculino , Fenilalanina/administración & dosificación , Fenilalanina/metabolismo , Carrera , Adulto Joven
10.
BMC Musculoskelet Disord ; 19(1): 223, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30021585

RESUMEN

BACKGROUND: Bone structure and strength are rapidly lost during conditions of decreased mechanical loading, and aged bones have a diminished ability to adapt to increased mechanical loading. This is a concern for older patients that experience periods of limited mobility or bed rest, but the acute effects of disuse on the bones of aged patients have not been thoroughly described. Previous animal studies have primarily examined the effect of mechanical unloading on young animals. Those that have studied aged animals have exclusively focused on bone loss during unloading and not bone recovery during subsequent reloading. In this study, we investigated the effect of decreased mechanical loading and subsequent reloading on bone using a hindlimb unloading model in Adult (9 month old) and Aged (28 month old) male rats. METHODS: Animals from both age groups were subjected to 14 days of hindlimb unloading followed by up to 7 days of reloading. Additional Aged rats were subjected to 7 days of forced treadmill exercise during reloading or a total of 28 days of reloading. Trabecular and cortical bone structure of the femur were quantified using ex vivo micro-computed tomography (µCT), and mechanical properties were quantified with mechanical testing. RESULTS: We found that Adult rats had substantially decreased trabecular bone volume fraction (BV/TV) following unloading (- 27%) while Aged animals did not exhibit significant bone loss following unloading. However, Aged animals had lower trabecular BV/TV after 3 days of reloading (- 20% compared to baseline), while trabecular BV/TV of Adult rats was not different from baseline values after 3 days of reloading. Trabecular BV/TV of Aged animals remained lower than control animals even with exercise during 7 days of reloading and after 28 days of reloading. CONCLUSIONS: These data suggest that aged bone is less responsive to both increased and decreased mechanical loading, and that acute periods of disuse may leave older subjects with a long-term deficit in trabecular bone mass. These finding indicate the need for therapeutic strategies to improve the skeletal health of elderly patients during periods of disuse.


Asunto(s)
Envejecimiento/fisiología , Densidad Ósea/fisiología , Resorción Ósea/diagnóstico por imagen , Suspensión Trasera/fisiología , Soporte de Peso/fisiología , Envejecimiento/patología , Animales , Suspensión Trasera/efectos adversos , Masculino , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344 , Microtomografía por Rayos X/métodos
11.
J Physiol ; 594(2): 453-68, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26548696

RESUMEN

KEY POINTS: Ribosome biogenesis is the primary determinant of translational capacity, but its regulation in skeletal muscle following acute resistance exercise is poorly understood. Resistance exercise increases muscle protein synthesis acutely, and muscle mass with training, but the role of translational capacity in these processes is unclear. Here, we show that acute resistance exercise activated pathways controlling translational activity and capacity through both rapamycin-sensitive and -insensitive mechanisms. Transcription factor c-Myc and its downstream targets, which are known to regulate ribosome biogenesis in other cell types, were upregulated after resistance exercise in a rapamycin-independent manner and may play a role in determining translational capacity in skeletal muscle. Local inhibition of myostatin was also not affected by rapamycin and may contribute to the rapamycin-independent effects of resistance exercise. ABSTRACT: This study aimed to determine (1) the effect of acute resistance exercise on mechanisms of ribosome biogenesis, and (2) the impact of mammalian target of rapamycin on ribosome biogenesis, and muscle protein synthesis (MPS) and degradation. Female F344BN rats underwent unilateral electrical stimulation of the sciatic nerve to mimic resistance exercise in the tibialis anterior (TA) muscle. TA muscles were collected at intervals over the 36 h of exercise recovery (REx); separate groups of animals were administered rapamycin pre-exercise (REx+Rapamycin). Resistance exercise led to a prolonged (6-36 h) elevation (30-50%) of MPS that was fully blocked by rapamycin at 6 h but only partially at 18 h. REx also altered pathways that regulate protein homeostasis and mRNA translation in a manner that was both rapamycin-sensitive (proteasome activity; phosphorylation of S6K1 and rpS6) and rapamycin-insensitive (phosphorylation of eEF2, ERK1/2 and UBF; gene expression of the myostatin target Mighty as well as c-Myc and its targets involved in ribosome biogenesis). The role of c-Myc was tested in vitro using the inhibitor 10058-F4, which, over time, decreased basal RNA and MPS in a dose-dependent manner (correlation of RNA and MPS, r(2) = 0.98), even though it had no effect on the acute stimulation of protein synthesis. In conclusion, acute resistance exercise stimulated rapamycin-sensitive and -insensitive mechanisms that regulate translation activity and capacity.


Asunto(s)
Contracción Muscular , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Biosíntesis de Proteínas , Sirolimus/farmacología , Animales , Línea Celular , Femenino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Ratas Endogámicas F344 , Ribosomas/metabolismo
12.
J Physiol ; 593(20): 4665-75, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26282066

RESUMEN

Exercise stimulates a dramatic change in the concentration of circulating hormones, such as growth hormone (GH), but the biological functions of this response are unclear. Pharmacological GH administration stimulates collagen synthesis; however, whether the post-exercise systemic milieu has a similar action is unknown. We aimed to determine whether the collagen content and tensile strength of tissue-engineered ligaments is enhanced by serum obtained post-exercise. Primary cells from a human anterior cruciate ligament (ACL) were used to engineer ligament constructs in vitro. Blood obtained from 12 healthy young men 15 min after resistance exercise contained GH concentrations that were ∼7-fold greater than resting serum (P < 0.001), whereas IGF-1 was not elevated at this time point (P = 0.21 vs. rest). Ligament constructs were treated for 7 days with medium supplemented with serum obtained at rest (RestTx) or 15 min post-exercise (ExTx), before tensile testing and collagen content analysis. Compared with RestTx, ExTx enhanced collagen content (+19%; 181 ± 33 vs. 215 ± 40 µg per construct P = 0.001) and ligament mechanical properties - maximal tensile load (+17%, P = 0.03 vs. RestTx) and ultimate tensile strength (+10%, P = 0.15 vs. RestTx). In a separate set of engineered ligaments, recombinant IGF-1, but not GH, enhanced collagen content and mechanics. Bioassays in 2D culture revealed that acute treatment with post-exercise serum activated mTORC1 and ERK1/2. In conclusion, the post-exercise biochemical milieu, but not recombinant GH, enhances collagen content and tensile strength of engineered ligaments, in association with mTORC1 and ERK1/2 activation.


Asunto(s)
Colágeno/metabolismo , Ejercicio Físico/fisiología , Ligamentos/metabolismo , Ligamentos/fisiología , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Hormona de Crecimiento Humana/sangre , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Resistencia a la Tracción , Ingeniería de Tejidos
14.
Calcif Tissue Int ; 96(3): 196-210, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25359125

RESUMEN

In a mature (weight neutral) animal, an increase in muscle mass only occurs when the muscle is loaded sufficiently to cause an increase in myofibrillar protein balance. A tight relationship between muscle hypertrophy, acute increases in protein balance, and the activity of the mechanistic target of rapamycin complex 1 (mTORC1) was demonstrated 15 years ago. Since then, our understanding of the signals that regulate load-induced hypertrophy has evolved considerably. For example, we now know that mechanical load activates mTORC1 in the same way as growth factors, by moving TSC2 (a primary inhibitor of mTORC1) away from its target (the mTORC activator) Rheb. However, the kinase that phosphorylates and moves TSC2 is different in the two processes. Similarly, we have learned that a distinct pathway exists whereby amino acids activate mTORC1 by moving it to Rheb. While mTORC1 remains at the forefront of load-induced hypertrophy, the importance of other pathways that regulate muscle mass are becoming clearer. Myostatin, is best known for its control of developmental muscle size. However, new mechanisms to explain how loading regulates this process are suggesting that it could play an important role in hypertrophic muscle growth as well. Last, new mechanisms are highlighted for how ß2 receptor agonists could be involved in load-induced muscle growth and why these agents are being developed as non-exercise-based therapies for muscle atrophy. Overall, the results highlight how studying the mechanism of load-induced skeletal muscle mass is leading the development of pharmaceutical interventions to promote muscle growth in those unwilling or unable to perform resistance exercise.


Asunto(s)
Hipertrofia/metabolismo , Músculo Esquelético/fisiología , Entrenamiento de Fuerza , Animales , Humanos
15.
Am J Physiol Endocrinol Metab ; 306(9): E1025-32, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24595306

RESUMEN

Aerobic exercise is typically associated with expansion of the mitochondrial protein pool and improvements in muscle oxidative capacity. The impact of aerobic exercise intensity on the synthesis of specific skeletal muscle protein subfractions is not known. We aimed to study the effect of aerobic exercise intensity on rates of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis over an early (0.5-4.5 h) and late (24-28 h) period during postexercise recovery. Using a within-subject crossover design, eight males (21 ± 1 yr, Vo2peak 46.7 ± 2.0 ml·kg(-1)·min(-1)) performed two work-matched cycle ergometry exercise trials (LOW: 60 min at 30% Wmax; HIGH: 30 min at 60% Wmax) in the fasted state while undergoing a primed constant infusion of l-[ring-(13)C6]phenylalanine. Muscle biopsies were obtained at rest and 0.5, 4.5, 24, and 28 h postexercise to determine both the "early" and "late" response of MyoPS and MitoPS and the phosphorylation status of selected proteins within both the Akt/mTOR and MAPK pathways. Over 24-28 h postexercise, MitoPS was significantly greater after the HIGH vs. LOW exercise trial (P < 0.05). Rates of MyoPS were increased equivalently over 0.5-4.5 h postexercise recovery (P < 0.05) but remained elevated at 24-28 h postexercise only following the HIGH trial. In conclusion, an acute bout of high- but not low-intensity aerobic exercise in the fasted state resulted in a sustained elevation of both MitoPS and MyoPS at 24-28 h postexercise recovery.


Asunto(s)
Ejercicio Físico/fisiología , Proteínas Mitocondriales/biosíntesis , Proteínas Musculares/biosíntesis , Miofibrillas/metabolismo , Esfuerzo Físico/fisiología , Recuperación de la Función/fisiología , Adulto , Prueba de Esfuerzo , Humanos , Masculino , Biosíntesis de Proteínas/fisiología , Factores de Tiempo , Adulto Joven
16.
Am J Physiol Endocrinol Metab ; 306(8): E989-97, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24595305

RESUMEN

The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. In young men (n = 8) and women (n = 7), we determined protein signaling and resting postabsorptive MPS during energy balance [EB; 45 kcal·kg fat-free mass (FFM)(-1)·day(-1)] and after 5 days of ED (30 kcal·kg FFM(-1)·day(-1)) as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Postabsorptive rates of MPS were 27% lower in ED than EB (P < 0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ~16 and ~34% above resting EB (P < 0.02). p70 S6K Thr(389) phosphorylation increased above EB only with combined exercise and protein intake (~2-7 fold, P < 0.05). In conclusion, short-term ED reduces postabsorptive MPS; however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short-term ED and could in the long term preserve muscle mass.


Asunto(s)
Proteínas en la Dieta/farmacología , Metabolismo Energético , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Descanso/fisiología , Adulto , Proteínas en la Dieta/administración & dosificación , Regulación hacia Abajo , Ingestión de Alimentos , Metabolismo Energético/efectos de los fármacos , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Biosíntesis de Proteínas , Adulto Joven
17.
Artículo en Inglés | MEDLINE | ID: mdl-38603808

RESUMEN

The impact of training volume on protein requirements in endurance trained males was investigated with indicator amino acid oxidation (IAAO) methodology on a recovery day (REST) or after a 10 or 20 km run while consuming a single suboptimal protein intake (0.93 g/kg/day). Phenylalanine excretion (F13CO2; inverse proxy for whole body protein synthesis) was greatest and phenylalanine net balance was lowest on REST compared to post-exercise recovery with no difference between training volumes. Single point F13CO2 was indistinguishable from past IAAO studies using multiple protein intakes. Our results suggest that protein requirements may be greatest on recovery days but are not influenced by moderate training volumes in endurance athletes.

18.
J Physiol ; 591(9): 2319-31, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23459753

RESUMEN

Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.


Asunto(s)
Proteínas de la Leche/administración & dosificación , Proteínas Musculares/biosíntesis , Miofibrillas/metabolismo , Entrenamiento de Fuerza , Adulto , Aminoácidos/sangre , Ingestión de Alimentos , Humanos , Insulina/sangre , Masculino , Biosíntesis de Proteínas , Factores de Tiempo , Proteína de Suero de Leche , Adulto Joven
19.
Med Sci Sports Exerc ; 55(10): 1866-1875, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37710376

RESUMEN

PURPOSE: This study aimed to determine the daily protein requirements of female and male endurance athletes in a home-based setting using noninvasive stable isotope methodology (i.e., indicator amino acid oxidation). METHODS: Eight males (30 ± 3 yr; 78.6 ± 10.5 kg; 75.6 ± 7.5 mL·kgFFM-1·min-1; mean ± SD) and seven females (30 ± 4 yr; 57.7 ± 5.0 kg; 77.5 ± 7.1 mL·kgFFM-1·min-1) during the midluteal phase were studied. After 2 d of controlled diet (1.4 gprotein·kg-1·d-1) and training (10 and 5 km run·d-1, respectively), participants completed a 20-km run before an at-home indicator amino acid oxidation trial testing a suboptimal, a moderate, and an excess (i.e., 0.2, 1.2, and 2.0 g·kg-1·d-1, respectively) protein intake. Protein was consumed as a crystalline amino acid mixture containing [1-13C]phenylalanine to examine whole-body phenylalanine flux and phenylalanine oxidation (PheOx; the reciprocal of whole-body protein synthesis) through breath and urine sample collection. A modified biphasic linear regression determined the breakpoint in PheOx for each participant to generate an estimated average intake that would maximize whole-body protein synthesis for each sex. RESULTS: PheOx was different (P < 0.01) between all protein intakes with no effect of sex (P = 0.63). Using a modified three-point curve resulted in a breakpoint that was not different (P = 0.94) between males and females (1.60 and 1.61 g·kg-1·d-1, respectively). The recommended intake (i.e., upper 95% confidence interval) was estimated to be 1.81 and 1.89 g·kg-1·d-1 for males and females, respectively. CONCLUSIONS: Our findings indicate that endurance athletes consuming a daily protein intake toward the upper end of current consensus recommendations (~1.85 g·kg-1·d-1) will maximize whole-body protein synthesis during postexercise recovery regardless of sex.


Asunto(s)
Aminoácidos , Entrenamiento Aeróbico , Humanos , Femenino , Masculino , Fenilalanina , Atletas , Consenso
20.
Clin J Pain ; 39(4): 188-201, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36943163

RESUMEN

OBJECTIVE: This review aimed to identify, summarize, and appraise the evidence supporting the coexistence of myofascial pain (MPS) and trigger points (MTrP) in osteoarthritis (OA), and the effectiveness of MTrPs treatments in OA-related pain and physical function outcomes. METHODS: Three databases were searched from inception to June 2022. We included observational and experimental studies to fulfill our 2 study aims. Two independent reviewers conducted 2-phase screening procedures and risk of bias using checklist tools for cross-sectional, quasi-experimental, and randomized control trials. Patient characteristics, findings of active and latent MTrPs in relevant muscles, treatments, and pain and physical function outcomes were extracted from low-risk bias studies. RESULTS: The literature search yielded 2898 articles, of which 6 observational and 7 experimental studies had a low bias risk and the data extracted. Active MTrPs in knee OA patients was more evident in the quadriceps and hamstring muscles than in healthy individuals. Dry needling on active MTrPs improved pain and physical function in the short term compared with sham treatment in hip OA patients. In knee OA, dry needling on latent or active MTrPs improved pain and functional outcomes compared with sham needling but did not result in better pain and physical outcomes when combined with a physical exercise program. DISCUSSION: The presence of active versus latent MTrPs seems to be a more sensitive discriminating feature of OA given that latent is often present in OA and healthy individuals. Dry needling on active MTrPs improved pain and physical function in the short term compared with sham treatment in hip OA patients. However, the small sample size and the few number of studies limit any firm recommendation on the treatment. REGISTRY: The study protocol was prospectively registered in Open Science Framework (https://doi.org/10.17605/OSF.IO/8DVU3).


Asunto(s)
Síndromes del Dolor Miofascial , Osteoartritis de la Cadera , Osteoartritis de la Rodilla , Humanos , Estudios Transversales , Síndromes del Dolor Miofascial/epidemiología , Síndromes del Dolor Miofascial/terapia , Síndromes del Dolor Miofascial/diagnóstico , Puntos Disparadores , Comorbilidad , Dolor , Estudios Observacionales como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA