Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
ACS Infect Dis ; 7(8): 2176-2191, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34218660

RESUMEN

Anthrax is caused by Bacillus anthracis and can result in nearly 100% mortality due in part to anthrax toxin. Antimalarial amodiaquine (AQ) acts as a host-oriented inhibitor of anthrax toxin endocytosis. Here, we determined the pharmacokinetics and safety of AQ in mice, rabbits, and humans as well as the efficacy in the fly, mouse, and rabbit models of anthrax infection. In the therapeutic-intervention studies, AQ nearly doubled the survival of mice infected subcutaneously with a B. anthracis dose lethal to 60% of the animals (LD60). In rabbits challenged with 200 LD50 of aerosolized B. anthracis, AQ as a monotherapy delayed death, doubled the survival rate of infected animals that received a suboptimal amount of antibacterial levofloxacin, and reduced bacteremia and toxemia in tissues. Surprisingly, the anthrax efficacy of AQ relies on an additional host macrophage-directed antibacterial mechanism, which was validated in the toxin-independent Drosophila model of Bacillus infection. Lastly, a systematic literature review of the safety and pharmacokinetics of AQ in humans from over 2 000 published articles revealed that AQ is likely safe when taken as prescribed, and its pharmacokinetics predicts anthrax efficacy in humans. Our results support the future examination of AQ as adjunctive therapy for the prophylactic anthrax treatment.


Asunto(s)
Carbunco , Bacillus anthracis , Amodiaquina , Animales , Carbunco/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Levofloxacino , Ratones , Conejos , Revisiones Sistemáticas como Asunto
2.
J Am Coll Health ; 54(2): 108-15, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16255323

RESUMEN

Cigarette smoking and smokeless tobacco (SLT) use are associated with numerous health hazards and economic costs, and rates of tobacco use have recently increased among young adults. In this study, the authors compared predictors of smoking and SLT use among college students (N = 21,410) from 13 Texas universities using a Web-based survey. Results revealed that sex, belonging to a fraternity or sorority, participation in intercollegiate sports, peer influences, and ethnicity predicted smoking and SLT use. Although common factors predicted both lifetime and current smoking and SLT use, patterns of prediction differed across dependent variables. The authors discuss implications for developing tobacco prevention programs targeting specific risk factors salient to the young adult population.


Asunto(s)
Recolección de Datos/métodos , Internet , Fumar/epidemiología , Estudiantes , Tabaco sin Humo , Universidades , Adolescente , Adulto , Femenino , Humanos , Masculino , Texas/epidemiología
3.
Sci Rep ; 5: 13476, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26310922

RESUMEN

A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.


Asunto(s)
Antígenos Bacterianos/farmacología , Toxinas Bacterianas/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Virus/efectos de los fármacos , Amodiaquina/química , Amodiaquina/farmacología , Animales , Catepsina B/metabolismo , Muerte Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Aprobación de Drogas , Ebolavirus/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Células HeLa , Humanos , Metaboloma/efectos de los fármacos , Ratones , Modelos Biológicos , Células RAW 264.7 , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA