Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Angew Chem Int Ed Engl ; 63(1): e202310983, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37857582

RESUMEN

The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α-galactosyl ceramide (α-GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B-cell activation. Herein, we introduce a novel derivatization hotspot at the α-GalCer skeleton, namely the N-substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self-adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen-specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α-GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α-GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.


Asunto(s)
Células T Asesinas Naturales , Vacunas , Adyuvantes Inmunológicos/farmacología , Galactosilceramidas/farmacología , Galactosilceramidas/química
2.
Nat Prod Rep ; 40(2): 412-451, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36458822

RESUMEN

Covering: 2009 to 2021Biosynthetically, most of the syntheses of triterpenes follow the cascade cyclization and rearrangement of the acyclic precursors viz., squalene (S) and 2,3-oxidosqualene (OS), which lead to the very well known tetra- and pentacyclic triterpene skeletons. Aside from these, numerous other triterpenoid molecules are also reported from various natural sources and their structures are derived from "S" and "OS" via some unusual cyclization operations which are different from the usual tetra- and pentacyclic frameworks. Numerous compelling advances have been made and reported in the identification of these unusual cyclized mono-, di-, tri- and tetracyclic triterpenes between 2009 and 2021. Besides a dramatic increase in the newly isolated uncommon cyclized triterpenoids, substantial progress in the (bio)-synthesis of these triterpenes has been published along with significant progress in their biological effects. In this review, 180 new unusual cyclized triterpenoids together with their demonstrated biogenetic pathways, syntheses and biological effects will be categorized and discussed.


Asunto(s)
Triterpenos , Triterpenos/química , Escualeno/química , Ciclización
3.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296471

RESUMEN

Capsaicin, produced by diverse Capsicum species, is among the world's most popular spices and of considerable pharmaceutical relevance. Although the capsaicinoid biosynthetic pathway has been investigated for decades, several biosynthetic steps have remained partly hypothetical. Genetic evidence suggested that the decisive capsaicin synthase is encoded by the Pun1 locus. Yet, the genetic evidence of the Pun1 locus was never corroborated by functionally active capsaicin synthase that presumably catalyzes an amide bond formation between trans 8-methyl-6-nonenoyl-CoA derived from branched-chain amino acid biosynthesis and vanilloylamine derived from the phenylpropanoid pathway. In this report, we demonstrate the enzymatic activity of a recombinant capsaicin synthase encoded by Pun1, functionally expressed in Escherichia coli, and provide information on its substrate specificity and catalytic properties. Recombinant capsaicin synthase is specific for selected aliphatic CoA-esters and highly specific for vanilloylamine. Partly purified from E. coli, the recombinant active enzyme is a monomeric protein of 51 kDa that is independent of additional co-factors or associated proteins, as previously proposed. These data can now be used to design capsaicin synthase variants with different properties and alternative substrate preferences.


Asunto(s)
Capsaicina , Proteínas de Escherichia coli , Capsaicina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos de Cadena Ramificada , Preparaciones Farmacéuticas , Coenzima A , Proteínas de la Membrana Bacteriana Externa
4.
Plant J ; 102(3): 569-581, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31837062

RESUMEN

Black pepper (Piper nigrum L.) is known for its high content of piperine, a cinnamoyl amide derivative regarded as largely responsible for the pungent taste of this widely used spice. Despite its long history and worldwide use, the biosynthesis of piperine and related amides has been enigmatic up to now. In this report we describe a specific piperic acid CoA ligase from immature green fruits of P. nigrum. The corresponding enzyme was cloned and functionally expressed in E. coli. The recombinant enzyme displays a high specificity for piperic acid and does not accept the structurally related feruperic acid characterized by a similar C-2 extension of the general C6-C3 phenylpropanoid structure. The enzyme is also inactive with the standard set of hydroxycinnamic acids tested including caffeic acid, 4-coumaric acid, ferulic acid, and sinapic acid. Substrate specificity is corroborated by in silico modelling that suggests a perfect fit for the substrate piperic acid to the active site of the piperic acid CoA ligase. The CoA ligase gene shows its highest expression levels in immature green fruits, is also expressed in leaves and flowers, but not in roots. Virus-induced gene silencing provided some preliminary indications that the production of piperoyl-CoA is required for the biosynthesis of piperine in black pepper fruits.


Asunto(s)
Alcaloides/metabolismo , Benzodioxoles/metabolismo , Coenzima A Ligasas/metabolismo , Frutas/metabolismo , Piper nigrum/metabolismo , Piperidinas/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Coenzima A Ligasas/genética , Frutas/genética , Silenciador del Gen , Piper nigrum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Chemistry ; 27(47): 12032-12035, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34081364

RESUMEN

Aetokthonotoxin has recently been identified as the cyanobacterial neurotoxin causing Vacuolar Myelinopathy, a fatal neurologic disease, spreading through a trophic cascade and affecting birds of prey such as the bald eagle in the USA. Here, we describe the total synthesis of this specialized metabolite. The complex, highly brominated 1,2'-biindole could be synthesized via a Somei-type Michael reaction as key step. The optimised sequence yielded the natural product in five steps with an overall yield of 29 %.


Asunto(s)
Enfermedades de las Aves , Enfermedades del Sistema Nervioso Central , Águilas , Animales , Vaina de Mielina , Neurotoxinas/toxicidad
6.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281176

RESUMEN

Multicomponent reactions, especially the Ugi-four component reaction (U-4CR), provide powerful protocols to efficiently access compounds having potent biological and pharmacological effects. Thus, a diverse library of betulinic acid (BA), fusidic acid (FA), cholic acid (CA) conjugates with TEMPO (nitroxide) have been prepared using this approach, which also makes them applicable in electron paramagnetic resonance (EPR) spectroscopy. Moreover, convertible amide modified spin-labelled fusidic acid derivatives were selected for post-Ugi modification utilizing a wide range of reaction conditions which kept the paramagnetic center intact. The nitroxide labelled betulinic acid analogue 6 possesses cytotoxic effects towards two investigated cell lines: prostate cancer PC3 (IC50 7.4 ± 0.7 µM) and colon cancer HT29 (IC50 9.0 ± 0.4 µM). Notably, spin-labelled fusidic acid derivative 8 acts strongly against these two cancer cell lines (PC3: IC50 6.0 ± 1.1 µM; HT29: IC50 7.4 ± 0.6 µM). Additionally, another fusidic acid analogue 9 was also found to be active towards HT29 with IC50 7.0 ± 0.3 µM (CV). Studies on the mode of action revealed that compound 8 increased the level of caspase-3 significantly which clearly indicates induction of apoptosis by activation of the caspase pathway. Furthermore, the exclusive mitochondria targeting of compound 18 was successfully achieved, since mitochondria are the major source of ROS generation.


Asunto(s)
Óxidos N-Cíclicos/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Ácido Cólico/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Ácido Fusídico/química , Humanos , Neoplasias/tratamiento farmacológico , Triterpenos Pentacíclicos/química , Marcadores de Spin , Esteroides/farmacología , Triterpenos/farmacología , Ácido Betulínico
7.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884518

RESUMEN

Fungal species of genus Sepedonium are rich sources of diverse secondary metabolites (e.g., alkaloids, peptaibols), which exhibit variable biological activities. Herein, two new peptaibols, named ampullosporin F (1) and ampullosporin G (2), together with five known compounds, ampullosporin A (3), peptaibolin (4), chrysosporide (5), c(Trp-Ser) (6) and c(Trp-Ala) (7), have been isolated from the culture of Sepedonium ampullosporum Damon strain KSH534. The structures of 1 and 2 were elucidated based on ESI-HRMSn experiments and intense 1D and 2D NMR analyses. The sequence of ampullosporin F (1) was determined to be Ac-Trp1-Ala2-Aib3-Aib4-Leu5-Aib6-Gln7-Aib8-Aib9-Aib10-GluOMe11-Leu12-Aib13-Gln14-Leuol15, while ampullosporin G (2) differs from 1 by exchanging the position of Gln7 with GluOMe11. Furthermore, the total synthesis of 1 and 2 was carried out on solid-phase to confirm the absolute configuration of all chiral amino acids as L. In addition, ampullosporin F (1) and G (2) showed significant antifungal activity against B. cinerea and P. infestans, but were inactive against S. tritici. Cell viability assays using human prostate (PC-3) and colorectal (HT-29) cancer cells confirmed potent anticancer activities of 1 and 2. Furthermore, a molecular docking study was performed in silico as an attempt to explain the structure-activity correlation of the characteristic ampullosporins (1-3).


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos/farmacología , Ésteres/química , Ácido Glutámico/química , Hypocreales/fisiología , Neoplasias/tratamiento farmacológico , Peptaiboles/farmacología , Ascomicetos/efectos de los fármacos , Botrytis/efectos de los fármacos , Humanos , Neoplasias/patología , Peptaiboles/química , Phytophthora infestans/efectos de los fármacos , Células Tumorales Cultivadas
8.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34770739

RESUMEN

The antioxidant and enzyme inhibitory potential of fifteen cycloartane-type triterpenes' potentials were investigated using different assays. In the phosphomolybdenum method, cycloalpioside D (6) (4.05 mmol TEs/g) showed the highest activity. In 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical and 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) cation radical scavenging assays, cycloorbicoside A-7-monoacetate (2) (5.03 mg TE/g) and cycloorbicoside B (10) (10.60 mg TE/g) displayed the highest activities, respectively. Oleanolic acid (14) (51.45 mg TE/g) and 3-O-ß-d-xylopyranoside-(23R,24S)-16ß,23;16α,24-diepoxycycloart-25(26)-en-3ß,7ß-diol 7-monoacetate (4) (13.25 mg TE/g) revealed the highest reducing power in cupric ion-reducing activity (CUPRAC) and ferric-reducing antioxidant power (FRAP) assays, respectively. In metal-chelating activity on ferrous ions, compound 2 displayed the highest activity estimated by 41.00 mg EDTAE/g (EDTA equivalents/g). The tested triterpenes showed promising AChE and BChE inhibitory potential with 3-O-ß-d-xylopyranoside-(23R,24S)-16ß,23;16α,24-diepoxycycloart-25(26)-en-3ß,7ß-diol 2',3',4',7-tetraacetate (3), exhibiting the highest inhibitory activity as estimated from 5.64 and 5.19 mg GALAE/g (galantamine equivalent/g), respectively. Compound 2 displayed the most potent tyrosinase inhibitory activity (113.24 mg KAE/g (mg kojic acid equivalent/g)). Regarding α-amylase and α-glucosidase inhibition, 3-O-ß-d-xylopyranoside-(23R,24S)-16ß,23;16α,24-diepoxycycloart-25(26)-en-3ß,7ß-diol (5) (0.55 mmol ACAE/g) and compound 3 (25.18 mmol ACAE/g) exerted the highest activities, respectively. In silico studies focused on compounds 2, 6, and 7 as inhibitors of tyrosinase revealed that compound 2 displayed a good ranking score (-7.069 kcal/mole) and also that the ΔG free-binding energy was the highest among the three selected compounds. From the ADMET/TOPKAT prediction, it can be concluded that compounds 4 and 5 displayed the best pharmacokinetic and pharmacodynamic behavior, with considerable activity in most of the examined assays.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Triterpenos/química , Triterpenos/farmacología , Antioxidantes/farmacocinética , Quelantes/química , Quelantes/farmacología , Inhibidores de la Colinesterasa , Inhibidores Enzimáticos/farmacocinética , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacocinética , Depuradores de Radicales Libres/farmacología , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Inhibidores de Proteasas , Relación Estructura-Actividad , Distribución Tisular , Triterpenos/farmacocinética
9.
J Biol Chem ; 294(17): 6857-6870, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30833326

RESUMEN

Nonhost resistance of Arabidopsis thaliana against Phytophthora infestans, a filamentous eukaryotic microbe and the causal agent of potato late blight, is based on a multilayered defense system. Arabidopsis thaliana controls pathogen entry through the penetration-resistance genes PEN2 and PEN3, encoding an atypical myrosinase and an ABC transporter, respectively, required for synthesis and export of unknown indole compounds. To identify pathogen-elicited leaf surface metabolites and further unravel nonhost resistance in Arabidopsis, we performed untargeted metabolite profiling by incubating a P. infestans zoospore suspension on leaves of WT or pen3 mutant Arabidopsis plants. Among the plant-secreted metabolites, 4-methoxyindol-3-yl-methanol and S-(4-methoxy-indol-3-yl-methyl) cysteine were detected in spore suspensions recollected from WT plants, but at reduced levels from the pen3 mutant plants. In both whole-cell and microsome-based assays, 4-methoxyindol-3-yl-methanol was transported in a PEN3-dependent manner, suggesting that this compound is a PEN3 substrate. The syntheses of both compounds were dependent on functional PEN2 and phytochelatin synthase 1. None of these compounds inhibited mycelial growth of P. infestans in vitro Of note, exogenous application of 4-methoxyindol-3-yl methanol slightly elevated cytosolic Ca2+ levels and enhanced callose deposition in hydathodes of seedlings treated with a bacterial pathogen-associated molecular pattern (PAMP), flagellin (flg22). Loss of flg22-induced callose deposition in leaves of pen3 seedlings was partially reverted by the addition of 4-methoxyindol-3-yl methanol. In conclusion, we have identified a specific indole compound that is a substrate for PEN3 and contributes to the plant defense response against microbial pathogens.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/metabolismo , Flagelina/metabolismo , Glucanos/metabolismo , Arabidopsis/microbiología , Calcio/metabolismo , Citosol/metabolismo , Indoles/metabolismo , Phytophthora infestans/aislamiento & purificación , Hojas de la Planta/metabolismo , Especificidad por Sustrato
10.
New Phytol ; 225(1): 310-325, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31469917

RESUMEN

Systemic acquired resistance (SAR) prepares infected plants for faster and stronger defense activation upon subsequent attacks. SAR requires an information relay from primary infection to distal tissue and the initiation and maintenance of a self-maintaining phytohormone salicylic acid (SA)-defense loop. In spatial and temporal resolution, we show that calcium-dependent protein kinase CPK5 contributes to immunity and SAR. In local basal resistance, CPK5 functions upstream of SA synthesis, perception, and signaling. In systemic tissue, CPK5 signaling leads to accumulation of SAR-inducing metabolite N-hydroxy-L-pipecolic acid (NHP) and SAR marker genes, including Systemic Acquired Resistance Deficient 1 (SARD1) Plants of increased CPK5, but not CPK6, signaling display an 'enhanced SAR' phenotype towards a secondary bacterial infection. In the sard1-1 background, CPK5-mediated basal resistance is still mounted, but NHP concentration is reduced and enhanced SAR is lost. The biochemical analysis estimated CPK5 half maximal kinase activity for calcium, K50 [Ca2+ ], to be c. 100 nM, close to the cytoplasmic resting level. This low threshold uniquely qualifies CPK5 to decode subtle changes in calcium, a prerequisite to signal relay and onset and maintenance of priming at later time points in distal tissue. Our data explain why CPK5 functions as a hub in basal and systemic plant immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Señalización del Calcio , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Resistencia a la Enfermedad/inmunología , Memoria Inmunológica , Ácidos Pipecólicos/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Ácido Salicílico/metabolismo , Calcio/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Memoria Inmunológica/genética , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética
11.
Bioconjug Chem ; 31(9): 2231-2240, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32809806

RESUMEN

Conjugate vaccines against encapsulated pathogens like Streptococcus pneumoniae face many challenges, including the existence of multiple serotypes with a diverse global distribution that constantly requires new formulations and higher coverage. Multivalency is usually achieved by combining capsular polysaccharide-protein conjugates from invasive serotypes, and for S. pneumoniae, this has evolved from 7- up to 20-valent vaccines. These glycoconjugate formulations often contain high concentrations of carrier proteins, which may negatively affect glycoconjugate immune response. This work broadens the scope of an efficient multicomponent strategy, leading to multivalent pneumococcal glycoconjugates assembled in a single synthetic operation. The bioconjugation method, based on the Ugi four-component reaction, enables the one-pot incorporation of two different polysaccharide antigens to a tetanus toxoid carrier, thus representing the fastest approach to achieve multivalency. The reported glycoconjugates incorporate three combinations of capsular polysaccharides 1, 6B, 14, and 18C from S. pneumoniae. The glycoconjugates were able to elicit functional specific antibodies against pneumococcal strains comparable to those shown by mixtures of the two monovalent glycoconjugates.


Asunto(s)
Glicoconjugados/química , Vacunas Neumococicas/química , Vacunas Conjugadas/química , Animales , Técnicas de Química Sintética , Glicoconjugados/síntesis química , Glicoconjugados/inmunología , Glicoconjugados/uso terapéutico , Humanos , Ratones , Modelos Moleculares , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/síntesis química , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/uso terapéutico , Conejos , Streptococcus pneumoniae/inmunología , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/uso terapéutico
12.
Bioorg Med Chem ; 27(15): 3237-3247, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31229422

RESUMEN

Bacterial resistance to the existing drugs requires constant development of new antibiotics. Developing compounds active against gram-negative bacteria thereby is one of the more challenging tasks. Among the many approaches to develop successful antibacterials, medicinal chemistry driven evolution of existing successful antibiotics is considered to be the most effective one. Towards this end, the C-20 aldehyde moiety of desmycosin was modified into α-acylamino and α-acyloxy amide functionalities using isonitrile-based Ugi and Passerini reactions, aiming for enhanced antibacterial and physicochemical properties. The desired compounds were obtained in 45-93% yield under mild conditions. The antibacterial activity of the resulting conjugates was tested against gram-negative Aliivibrio fischeri. The antibiotic strength is mostly governed by the amine component introduced. Thus, methylamine derived desmycosin bis-amide 4 displayed an enhanced inhibition rate vs. desmycosin (99% vs. 83% at 1 µM). Derivatives with long acyclic or bulky amine and isocyanide Ugi components reduced potency, whereas carboxylic acid reagents with longer chain length afforded increased bioactivity. In Passerini 3-component products, the butyric ester amide 22 displayed a higher activity (90% at 1 µM) than the parent compound desmycosin (2).


Asunto(s)
Aliivibrio fischeri/efectos de los fármacos , Amidas/farmacología , Antibacterianos/farmacología , Tilosina/análogos & derivados , Amidas/síntesis química , Amidas/química , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tilosina/síntesis química , Tilosina/química , Tilosina/farmacología
13.
New Phytol ; 217(2): 613-624, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28277608

RESUMEN

The N-end rule pathway has emerged as a major system for regulating protein functions by controlling their turnover in medical, animal and plant sciences as well as agriculture. Although novel functions and enzymes of the pathway have been discovered, the ubiquitination mechanism and substrate specificity of N-end rule pathway E3 ubiquitin ligases have remained elusive. Taking the first discovered bona fide plant N-end rule E3 ligase PROTEOLYSIS1 (PRT1) as a model, we used a novel tool to molecularly characterize polyubiquitination live, in real time. We gained mechanistic insights into PRT1 substrate preference and activation by monitoring live ubiquitination using a fluorescent chemical probe coupled to artificial substrate reporters. Ubiquitination was measured by rapid in-gel fluorescence scanning as well as in real time by fluorescence polarization. The enzymatic activity, substrate specificity, mechanisms and reaction optimization of PRT1-mediated ubiquitination were investigated ad hoc instantaneously and with significantly reduced reagent consumption. We demonstrated that PRT1 is indeed an E3 ligase, which has been hypothesized for over two decades. These results demonstrate that PRT1 has the potential to be involved in polyubiquitination of various substrates and therefore pave the way to understanding recently discovered phenotypes of prt1 mutants.


Asunto(s)
Arabidopsis/metabolismo , Sistemas de Computación , Colorantes Fluorescentes/metabolismo , Ubiquitinación , Proteínas de Arabidopsis/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/metabolismo , Proteolisis , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
14.
Chemistry ; 24(39): 9788-9793, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29882608

RESUMEN

Aiming at providing an efficient and versatile method for the diversity-oriented decoration and ligation of fullerenes, we report the first C60 derivatization strategy based on isocyanide-multicomponent reactions (I-MCRs). The approach comprises the use of Passerini and Ugi reactions for assembling pseudo-peptidic scaffolds (i.e., N-alkylated and depsipeptides, peptoids) on carboxylic acid-functionalized fullerenes. The method showed wide substrate scope for the oxo and isocyanide components, albeit the Ugi reaction proved efficient only for aromatic amines. The approach was successfully employed for the ligation of oligopeptides and polyethyleneglycol chains (PEG) to C60 , as well as for the construction of bis-antennary as well as PEG-tethered dimeric fullerenes. The quantum yields for the formation of 1 O2 was remarkable for the selected compounds analyzed.

15.
Org Biomol Chem ; 14(48): 11336-11341, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-27878155

RESUMEN

For the first time, spin-labelled coumpounds have been obtained by isonitrile-based multi component reactions (IMCRs). The typical IMCR Ugi-protocols offer a simple experimental setup allowing structural variety by which labelled diketopiperazines (DKPs) and peptide-peptoid chimera have been synthesized. The reaction keeps the paramagnetic spin label intact and offers a simple and versatile route to a large variety of new and chemically diverse spin labels.


Asunto(s)
Dicetopiperazinas/química , Péptidos/química , Espectroscopía de Resonancia por Spin del Electrón , Estructura Molecular , Péptidos/síntesis química
16.
J Nat Prod ; 79(4): 929-38, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26953507

RESUMEN

The Chilean Sepedonium aff. chalcipori strain KSH 883, isolated from the endemic Boletus loyo Philippi, was studied in a polythetic approach based on chemical, molecular, and biological data. A taxonomic study of the strain using molecular data of the ITS, EF1-α, and RPB2 barcoding genes confirmed the position of the isolated strain within the S. chalcipori clade, but also suggested the separation of this clade into three different species. Two new linear 15-residue peptaibols, named chilenopeptins A (1) and B (2), together with the known peptaibols tylopeptins A (3) and B (4) were isolated from the semisolid culture of strain KSH 883. The structures of 1 and 2 were elucidated on the basis of HRESIMS(n) experiments in conjunction with comprehensive 1D and 2D NMR analysis. Thus, the sequence of chilenopeptin A (1) was identified as Ac-Aib(1)-Ser(2)-Trp(3)-Aib(4)-Pro(5)-Leu(6)-Aib(7)-Aib(8)-Gln(9)-Aib(10)-Aib(11)-Gln(12)-Aib(13)-Leu(14)-Pheol(15), while chilenopeptin B (2) differs from 1 by the replacement of Trp(3) by Phe(3). Additionally, the total synthesis of 1 and 2 was accomplished by a solid-phase approach, confirming the absolute configuration of all chiral amino acids as l. Both the chilenopeptins (1 and 2) and tylopeptins (3 and 4) were evaluated for their potential to inhibit the growth of phytopathogenic organisms.


Asunto(s)
Antibacterianos/aislamiento & purificación , Peptaiboles/aislamiento & purificación , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacología , Basidiomycota/metabolismo , Chile , Hypocreales/química , Estructura Molecular , Peptaiboles/química , Peptaiboles/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Trichoderma/química
17.
Angew Chem Int Ed Engl ; 54(26): 7621-5, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-25967546

RESUMEN

In an endeavor to provide an efficient route to natural product hybrids, described herein is an efficient, highly stereoselective, one-pot process comprising an organocatalytic conjugate addition of 1,3-dicarbonyls to α,ß-unsaturated aldehydes followed by an intramolecular isocyanide-based multicomponent reaction. This approach enables the rapid assembly of complex natural product hybrids including up to four different molecular fragments, such as hydroquinolinone, chromene, piperidine, peptide, lipid, and glycoside moieties. The strategy combines the stereocontrol of organocatalysis with the diversity-generating character of multicomponent reactions, thus leading to structurally unique peptidomimetics integrating heterocyclic, lipidic, and sugar moieties.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/síntesis química , Carbohidratos , Catálisis , Estructura Molecular , Estereoisomerismo
18.
Beilstein J Org Chem ; 11: 25-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25670988

RESUMEN

A library of ten 1,3-diyne-linked peptoids has been synthesized through an Ugi four-component reaction (U-4CR) followed by a copper-catalysed alkyne homocoupling (Glaser reaction). The short and chemoselective reaction sequence allows generating diverse (pseudo) dimeric peptoids. A combinatorial version allows the one-pot preparation of, e.g., six-compound-libraries of homo- and heterodimers verified by ESI-MS and HPLC. In a preliminary evaluation, some compounds display moderate activity against the Gram-positive bacterium Bacillus subtilis.

19.
Chem Soc Rev ; 42(12): 4948-62, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23426583

RESUMEN

Multicomponent reactions (MCRs) are by far the most successful class of reactions leading to high structural diversity and molecular complexity through a single transformation. As part of the ongoing search for pharmacologically active lead structures, the obtained structural diversity allows for the fast exploration of a large chemical space. Not surprisingly, the development of MCRs, leading to new structural frameworks or serving as key transformations in the total synthesis of natural products, has expanded rapidly over the last few decades. To date a multitude of new three- and four-component reactions have already been described; however, examples of "higher-order" MCRs where five or even more components are combined in a single reaction vessel are remarkably scarce. This tutorial review aims to critically describe the developments achieved in recent years, charting the ideas, challenges, and milestone reactions that were essential for the progress of this field.


Asunto(s)
Productos Biológicos/química , Aminas/química , Productos Biológicos/síntesis química , Técnicas Químicas Combinatorias , Peptidomiméticos , Estereoisomerismo , Triazoles/química
20.
Anal Bioanal Chem ; 405(7): 2163-73, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22644144

RESUMEN

Multidimensional high-performance liquid chromatography (HPLC) is a key method in shotgun proteomics approaches for analyzing highly complex protein mixtures by complementary chromatographic separation principles. Here, we describe an integrated 3D-nano-HPLC/nano-electrospray ionization quadrupole time-of-flight mass spectrometry system that allows an enzymatic digestion of proteins followed by an enrichment and subsequent separation of the created peptide mixtures. The online 3D-nano-HPLC system is composed of a monolithic trypsin reactor in the first dimension, a monolithic affinity column with immobilized monomeric avidin in the second dimension, and a reversed phase C18 HPLC-Chip in the third dimension that is coupled to a nano-ESI-Q-TOF mass spectrometer. The 3D-LC/MS setup is exemplified for the identification of biotinylated proteins from a simple protein mixture. Additionally, we describe an online 2D-nano-HPLC/nano-ESI-LTQ-Orbitrap-MS/MS setup for the enrichment, separation, and identification of cross-linked, biotinylated species from chemical cross-linking of cytochrome c and a calmodulin/peptide complex using a novel trifunctional cross-linker with two amine-reactive groups and a biotin label.


Asunto(s)
Biotina/química , Cromatografía Líquida de Alta Presión/métodos , Nanotecnología/métodos , Proteínas/química , Espectrometría de Masas en Tándem/métodos , Animales , Bovinos , Pollos , Cromatografía Líquida de Alta Presión/instrumentación , Reactivos de Enlaces Cruzados/química , Caballos , Proteínas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA