Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(2): 305-320.e10, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625049

RESUMEN

The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing.


Asunto(s)
Carcinogénesis/genética , Genómica , Neoplasias/patología , Reparación del ADN/genética , Bases de Datos Genéticas , Genes Relacionados con las Neoplasias , Humanos , Redes y Vías Metabólicas/genética , Inestabilidad de Microsatélites , Mutación , Neoplasias/genética , Neoplasias/inmunología , Transcriptoma , Microambiente Tumoral/genética
2.
Cell ; 173(4): 864-878.e29, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681454

RESUMEN

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Familia 4 del Citocromo P450/deficiencia , Familia 4 del Citocromo P450/genética , Descubrimiento de Drogas , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Glucocorticoides/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
3.
Cell ; 164(3): 538-49, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26806129

RESUMEN

Mutational processes constantly shape the somatic genome, leading to immunity, aging, cancer, and other diseases. When cancer is the outcome, we are afforded a glimpse into these processes by the clonal expansion of the malignant cell. Here, we characterize a less explored layer of the mutational landscape of cancer: mutational asymmetries between the two DNA strands. Analyzing whole-genome sequences of 590 tumors from 14 different cancer types, we reveal widespread asymmetries across mutagenic processes, with transcriptional ("T-class") asymmetry dominating UV-, smoking-, and liver-cancer-associated mutations and replicative ("R-class") asymmetry dominating POLE-, APOBEC-, and MSI-associated mutations. We report a striking phenomenon of transcription-coupled damage (TCD) on the non-transcribed DNA strand and provide evidence that APOBEC mutagenesis occurs on the lagging-strand template during DNA replication. As more genomes are sequenced, studying and classifying their asymmetries will illuminate the underlying biological mechanisms of DNA damage and repair.


Asunto(s)
Daño del ADN , Análisis Mutacional de ADN , Reparación del ADN , Neoplasias/genética , Replicación del ADN , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Mutación , Neoplasias/patología , Transcripción Genética
4.
Cell ; 144(5): 703-18, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21376233

RESUMEN

Among breast cancers, triple-negative breast cancer (TNBC) is the most poorly understood and is refractory to current targeted therapies. Using a genetic screen, we identify the PTPN12 tyrosine phosphatase as a tumor suppressor in TNBC. PTPN12 potently suppresses mammary epithelial cell proliferation and transformation. PTPN12 is frequently compromised in human TNBCs, and we identify an upstream tumor-suppressor network that posttranscriptionally controls PTPN12. PTPN12 suppresses transformation by interacting with and inhibiting multiple oncogenic tyrosine kinases, including HER2 and EGFR. The tumorigenic and metastatic potential of PTPN12-deficient TNBC cells is severely impaired upon restoration of PTPN12 function or combined inhibition of PTPN12-regulated tyrosine kinases, suggesting that TNBCs are dependent on the proto-oncogenic tyrosine kinases constrained by PTPN12. Collectively, these data identify PTPN12 as a commonly inactivated tumor suppressor and provide a rationale for combinatorially targeting proto-oncogenic tyrosine kinases in TNBC and other cancers based on their profile of tyrosine-phosphatase activity.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Transformación Celular Neoplásica , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Mutación , Metástasis de la Neoplasia , Procesamiento Proteico-Postraduccional
5.
Nature ; 578(7793): 94-101, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025018

RESUMEN

Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses3-15, enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.


Asunto(s)
Mutación/genética , Neoplasias/genética , Factores de Edad , Secuencia de Bases , Exoma/genética , Genoma Humano/genética , Humanos , Análisis de Secuencia de ADN
6.
Genes Chromosomes Cancer ; 63(1): e23195, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37548271

RESUMEN

Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1) confers an increased risk of developing rhabdoid tumors and is caused by germline mutations in SMARCB1. RTPS1 should be evaluated in all individuals with rhabdoid tumor and is more likely in those with a young age at presentation (occasionally congenital presentation), multiple primary tumors, or a family history of rhabdoid tumor or RTPS1. Proband genetic testing is the standard method for diagnosing RTPS1. Most known RTPS1-related SMARCB1 gene mutations are copy number variants (CNVs) or single nucleotide variants/indels, but structural variant analysis (SVA) is not usually included in the molecular evaluation. Here, we report two children with RTPS1 presenting with atypical teratoid/rhabdoid tumor (ATRT) who had constitutional testing showing balanced chromosome translocations involving SMARCB1. Patient 1 is a 23-year-old female diagnosed with pineal region ATRT at 7 months who was found to have a de novo, constitutional t(16;22)(p13.3;q11.2). Patient 2 is a 24-month-old male diagnosed with a posterior fossa ATRT at 14 months, with subsequent testing showing a constitutional t(5;22)(q14.1;q11.23). These structural rearrangements have not been previously reported in RTPS1. While rare, these cases suggest that structural variants should be considered in the evaluation of children with rhabdoid tumors to provide more accurate genetic counseling on the risks of developing tumors, the need for surveillance, and the risks of passing the disorder on to future children. Further research is needed to understand the prevalence, clinical features, and tumor risks associated with RTPS1-related constitutional balanced translocations.


Asunto(s)
Neoplasias Encefálicas , Trastornos de los Cromosomas , Tumor Rabdoide , Teratoma , Niño , Femenino , Masculino , Humanos , Adulto Joven , Adulto , Lactante , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Proteína SMARCB1/genética , Neoplasias Encefálicas/genética , Mutación de Línea Germinal , Translocación Genética , Teratoma/genética , Teratoma/patología
8.
BMC Biol ; 21(1): 41, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829160

RESUMEN

BACKGROUND: Despite the process of DNA replication being mechanistically highly conserved, the location of origins of replication (ORI) may vary from one tissue to the next, or between rounds of replication in eukaryotes, suggesting flexibility in the choice of locations to initiate replication. Lists of human ORI therefore vary widely in number and location, and there are currently no methods available to compare them. Here, we propose a method of detection of ORI based on somatic mutation patterns generated by the mutator phenotype of damaged DNA polymerase epsilon (POLE). RESULTS: We report the genome-wide localization of constitutive ORI in POLE-mutated human tumors using whole genome sequencing data. Mutations accumulated after many rounds of replication of unsynchronized dividing cell populations in tumors allow to identify constitutive origins, which we show are shared with high fidelity between individuals and tumor types. Using a Smith-Waterman-like dynamic programming approach, we compared replication origin positions obtained from multiple different methods. The comparison allowed us to define a consensus set of replication origins, identified consistently by multiple ORI detection methods. Many DNA features co-localized with the consensus set of ORI, including chromatin loop anchors, G-quadruplexes, S/MARs, and CpGs. Among all features, the H2A.Z histone exhibited the most significant association. CONCLUSIONS: Our results show that mutation-based detection of replication origins is a viable approach to determining their location and associated sequence features.


Asunto(s)
Replicación del ADN , Neoplasias , Humanos , Origen de Réplica , ADN Polimerasa II/genética , ADN , Histonas/genética , Neoplasias/genética
9.
Genes Chromosomes Cancer ; 62(10): 611-616, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37132513

RESUMEN

Congenital/neonatal bone neoplasms are extremely rare. We present the case of a patient with a neonatal bone tumor of the fibula that had osteoblastic differentiation and a novel PTBP1::FOSB fusion. FOSB fusions are described in several different tumor types, including osteoid osteoma and osteoblastoma; however, these tumors typically present in the second or third decade of life, with case reports as young as 4 months of age. Our case expands the spectrum of congenital/neonatal bone lesions. The initial radiologic, histologic, and molecular findings supported the decision for close clinical follow-up rather than more aggressive intervention. Since the time of diagnosis, this tumor has undergone radiologic regression without treatment.


Asunto(s)
Neoplasias Óseas , Osteoblastoma , Osteoma Osteoide , Recién Nacido , Humanos , Osteoma Osteoide/diagnóstico , Osteoma Osteoide/patología , Osteoblastoma/diagnóstico , Osteoblastoma/patología , Neoplasias Óseas/patología , Diagnóstico Diferencial , Proteínas Proto-Oncogénicas c-fos/genética , Ribonucleoproteínas Nucleares Heterogéneas , Proteína de Unión al Tracto de Polipirimidina
10.
Bioinformatics ; 38(2): 549-551, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34431982

RESUMEN

SUMMARY: Small insertions and deletions (indels) in nucleotide sequence may be represented differently between mapping algorithms and variant callers, or in the flanking sequence context. Representational ambiguity is especially profound for complex indels, complicating comparisons between multiple mappings and call sets. Complex indels may additionally suffer from incomplete allele representation, potentially leading to critical misannotation of variant effect. We present indelPost, a Python library that harmonizes these ambiguities for simple and complex indels via realignment and read-based phasing. We demonstrate that indelPost enables accurate analysis of ambiguous data and can derive the correct complex indel alleles from the simple indel predictions provided by standard small variant detectors, with improved performance over a specialized tool for complex indel analysis. AVAILABILITY AND IMPLEMENTATION: indelPost is freely available at: https://github.com/stjude/indelPost. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos , Análisis de Secuencia de ADN , Mutación INDEL , Biblioteca de Genes
11.
Hepatology ; 76(6): 1634-1648, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35349735

RESUMEN

BACKGROUND AND AIMS: Although many studies revealed transcriptomic subtypes of HCC, concordance of the subtypes are not fully examined. We aim to examine a consensus of transcriptomic subtypes and correlate them with clinical outcomes. APPROACH AND RESULTS: By integrating 16 previously established genomic signatures for HCC subtypes, we identified five clinically and molecularly distinct consensus subtypes. STM (STeM) is characterized by high stem cell features, vascular invasion, and poor prognosis. CIN (Chromosomal INstability) has moderate stem cell features, but high genomic instability and low immune activity. IMH (IMmune High) is characterized by high immune activity. BCM (Beta-Catenin with high Male predominance) is characterized by prominent ß-catenin activation, low miRNA expression, hypomethylation, and high sensitivity to sorafenib. DLP (Differentiated and Low Proliferation) is differentiated with high hepatocyte nuclear factor 4A activity. We also developed and validated a robust predictor of consensus subtype with 100 genes and demonstrated that five subtypes were well conserved in patient-derived xenograft models and cell lines. By analyzing serum proteomic data from the same patients, we further identified potential serum biomarkers that can stratify patients into subtypes. CONCLUSIONS: Five HCC subtypes are correlated with genomic phenotypes and clinical outcomes and highly conserved in preclinical models, providing a framework for selecting the most appropriate models for preclinical studies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Femenino , Carcinoma Hepatocelular/patología , beta Catenina/genética , Neoplasias Hepáticas/patología , Consenso , Proteómica , Genómica , Fenotipo
12.
Neuropathol Appl Neurobiol ; 48(5): e12815, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35320876

RESUMEN

Recent advancements in molecular characterisation have identified four principal molecular groups of medulloblastoma: WNT, SHH, group 3 and group 4. Each has its characteristic clinical features, signature genetic alterations and distinct DNA methylome profiles. Thus far, CTNNB1 mutations have been considered pathognomonic of WNT-activated medulloblastoma. Furthermore, it has been shown that CTNNB1 mutations dominantly drive the WNT-activated phenotype in medulloblastoma, even in the presence of alterations in the SHH pathway. We herein report an illustrative case that challenges this belief-a medulloblastoma with a pathogenic CTNNB1 mutation that otherwise showed the histopathology, immunophenotype and methylation and transcriptomic profiles of an SHH-activated medulloblastoma. Detailed molecular analyses, including whole exome sequencing, transcriptome analysis and DNA methylation profiling with DKFZ brain tumour classifier and St. Jude MLPnet neural network classifier analyses, have been performed on the tumour. Our example emphasises the diagnostic value of the immunohistochemistry panel with YAP1, GAB1 and ß-catenin and DNA methylation profiling, combined with exome sequencing, in the characterisation of medulloblastoma. CTNNB1 mutations are not specific for WNT-activated medulloblastoma, and different CTNNB1 mutations have diverse oncogenic potential.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , beta Catenina , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Metilación de ADN , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Mutación , Transcriptoma , beta Catenina/genética
13.
Proc Natl Acad Sci U S A ; 116(43): 21715-21726, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591222

RESUMEN

Meningiomas account for one-third of all primary brain tumors. Although typically benign, about 20% of meningiomas are aggressive, and despite the rigor of the current histopathological classification system there remains considerable uncertainty in predicting tumor behavior. Here, we analyzed 160 tumors from all 3 World Health Organization (WHO) grades (I through III) using clinical, gene expression, and sequencing data. Unsupervised clustering analysis identified 3 molecular types (A, B, and C) that reliably predicted recurrence. These groups did not directly correlate with the WHO grading system, which classifies more than half of the tumors in the most aggressive molecular type as benign. Transcriptional and biochemical analyses revealed that aggressive meningiomas involve loss of the repressor function of the DREAM complex, which results in cell-cycle activation; only tumors in this category tend to recur after full resection. These findings should improve our ability to predict recurrence and develop targeted treatments for these clinically challenging tumors.


Asunto(s)
Proteínas de Interacción con los Canales Kv/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Recurrencia Local de Neoplasia/genética , Proteínas Represoras/genética , Adulto , Anciano , Anciano de 80 o más Años , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Variaciones en el Número de Copia de ADN/genética , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Neoplasias Meníngeas/patología , Meningioma/patología , Persona de Mediana Edad , Pronóstico , Adulto Joven
14.
Clin Infect Dis ; 73(7): e2243-e2250, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33035316

RESUMEN

Infectious diseases/human immunodeficiency virus (ID/HIV) physicians and other healthcare professionals advocate within the healthcare system to ensure adults and children receive effective treatment. These advocacy skills can be used to inform domestic and global infectious diseases policies to improve healthcare systems and public health. ID/HIV physicians have a unique frontline perspective to share with federal policymakers regarding how programs and policies benefit patients and public health. Providing this input is critical to the enactment of legislation that will maximize the response to infectious diseases. This article discusses the advocacy of ID/HIV physicians and other healthcare professionals in federal health policy. Key issues include funding for ID/HIV programs; the protection of public health and access to healthcare; improving research opportunities; and advancing the field of ID/HIV, including supporting the next generation of ID/HIV clinicians. The article also describes best practices for advocacy and provides case studies illustrating the impact of ID/HIV physician advocacy.


Asunto(s)
Enfermedades Transmisibles , Infecciones por VIH , Médicos , Adulto , Niño , VIH , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Política de Salud , Humanos
15.
J Neurooncol ; 149(2): 219-230, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32949309

RESUMEN

INTRODUCTION: Meningiomas are the most common primary intracranial tumor. Recent next generation sequencing analyses have elaborated the molecular drivers of this disease. We aimed to identify and characterize novel fusion genes in meningiomas. METHODS: We performed a secondary analysis of our RNA sequencing data of 145 primary meningioma from 140 patients to detect fusion genes. Semi-quantitative rt-PCR was performed to confirm transcription of the fusion genes in the original tumors. Whole exome sequencing was performed to identify copy number variations within each tumor sample. Comparative RNA seq analysis was performed to assess the clonality of the fusion constructs within the tumor. RESULTS: We detected six fusion events (NOTCH3-SETBP1, NF2-SPATA13, SLC6A3-AGBL3, PHF19-FOXP2 in two patients, and ITPK1-FBP2) in five out of 145 tumor samples. All but one event (NF2-SPATA13) led to extremely short reading frames, making these events de facto null alleles. Three of the five patients had a history of childhood radiation. Four out of six fusion events were detected in expression type C tumors, which represent the most aggressive meningioma. We validated the presence of the RNA transcripts in the tumor tissue by semi-quantitative RT PCR. All but the two PHF19-FOXP2 fusions demonstrated high degrees of clonality. CONCLUSIONS: Fusion genes occur infrequently in meningiomas and are more likely to be found in tumors with greater degree of genomic instability (expression type C) or in patients with history of cranial irradiation.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Mutación , Proteínas de Fusión Oncogénica/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Neoplasias Meníngeas/patología , Meningioma/patología , Persona de Mediana Edad , Pronóstico
16.
Nature ; 511(7508): 241-5, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24896186

RESUMEN

Intracranial germ cell tumours (IGCTs) are a group of rare heterogeneous brain tumours that are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographical and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically five- to eightfold greater in Japan and other East Asian countries than in Western countries, with peak incidence near the time of puberty. About half of the tumours are located in the pineal region. The male-to-female incidence ratio is approximately 3-4:1 overall, but is even higher for tumours located in the pineal region. Owing to the scarcity of tumour specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next-generation sequencing, single nucleotide polymorphism array and expression array. We find the KIT/RAS signalling pathway frequently mutated in more than 50% of IGCTs, including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gains of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional co-repressor and tumour suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, which codes for a histone demethylase and is a coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway.


Asunto(s)
Neoplasias Encefálicas/genética , Mutación de Línea Germinal/genética , Mutación/genética , Neoplasias de Células Germinales y Embrionarias/genética , Adulto , Neoplasias Encefálicas/patología , Niño , Femenino , Humanos , Japón , Masculino , Neoplasias de Células Germinales y Embrionarias/patología , Proteína Oncogénica v-akt/genética , Proteínas Proto-Oncogénicas c-kit/genética , Reproducibilidad de los Resultados , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Adulto Joven , Proteínas ras/genética
17.
Hum Mutat ; 40(1): 73-89, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30302893

RESUMEN

MicroRNA (miRNA) expression is frequently deregulated in human disease, in contrast, disease-associated miRNA mutations are understudied. We developed Annotative Database of miRNA Elements, ADmiRE, which combines multiple existing and new biological annotations to aid prioritization of causal miRNA variation. We annotated 10,206 mature (3,257 within seed region) miRNA variants from multiple large sequencing datasets including gnomAD (15,496 genomes; 123,136 exomes). The pattern of miRNA variation closely resembles protein-coding exonic regions, with no difference between intragenic and intergenic miRNAs (P = 0.56), and high confidence miRNAs demonstrate higher sequence constraint (P < 0.001). Conservation analysis across 100 vertebrates identified 765 highly conserved miRNAs that also have limited genetic variation in gnomAD. We applied ADmiRE to the TCGA PanCancerAtlas WES dataset containing over 10,000 individuals across 33 adult cancers and annotated 1,267 germline (rare in gnomAD) and 1,492 somatic miRNA variants. Several miRNA families with deregulated gene expression in cancer have low levels of both somatic and germline variants, e.g., let-7 and miR-10. In addition to known somatic miR-142 mutations in hematologic cancers, we describe novel somatic miR-21 mutations in esophageal cancers impacting downstream miRNA targets. Through the development of ADmiRE, we present a framework for annotation and prioritization of miRNA variation in disease datasets.


Asunto(s)
Bases de Datos Genéticas , Enfermedad/genética , Genética de Población , MicroARNs/genética , Anotación de Secuencia Molecular , Animales , Secuencia de Bases , Secuencia Conservada , Genoma Humano , Mutación de Línea Germinal/genética , Humanos , MicroARNs/metabolismo , Neoplasias/genética , Filogenia , Vertebrados/genética , Secuenciación del Exoma
18.
N Engl J Med ; 374(2): 135-45, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26536169

RESUMEN

BACKGROUND: Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. METHODS: We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. RESULTS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). CONCLUSIONS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).


Asunto(s)
Carcinoma Papilar/metabolismo , Neoplasias Renales/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Carcinoma Papilar/genética , Islas de CpG/fisiología , Metilación de ADN , Humanos , Neoplasias Renales/genética , MicroARNs/química , Factor 2 Relacionado con NF-E2/genética , Fenotipo , Proteínas Proto-Oncogénicas c-met/química , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/química , ARN Neoplásico/química , Análisis de Secuencia de ARN , Transducción de Señal/fisiología
19.
Gastroenterology ; 154(1): 195-210, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28918914

RESUMEN

BACKGROUND & AIMS: Development of hepatocellular carcinoma (HCC) is associated with alterations in the transforming growth factor-beta (TGF-ß) signaling pathway, which regulates liver inflammation and can have tumor suppressor or promoter activities. Little is known about the roles of specific members of this pathway at specific of HCC development. We took an integrated approach to identify and validate the effects of changes in this pathway in HCC and identify therapeutic targets. METHODS: We performed transcriptome analyses for a total of 488 HCCs that include data from The Cancer Genome Atlas. We also screened 301 HCCs reported in the Catalogue of Somatic Mutations in Cancer and 202 from Cancer Genome Atlas for mutations in genome sequences. We expressed mutant forms of spectrin beta, non-erythrocytic 1 (SPTBN1) in HepG2, SNU398, and SNU475 cells and measured phosphorylation, nuclear translocation, and transcriptional activity of SMAD family member 3 (SMAD3). RESULTS: We found somatic mutations in at least 1 gene whose product is a member of TGF-ß signaling pathway in 38% of HCC samples. SPTBN1 was mutated in the largest proportion of samples (12 of 202, 6%). Unsupervised clustering of transcriptome data identified a group of HCCs with activation of the TGF-ß signaling pathway (increased transcription of genes in the pathway) and a group of HCCs with inactivation of TGF-ß signaling (reduced expression of genes in this pathway). Patients with tumors with inactivation of TGF-ß signaling had shorter survival times than patients with tumors with activation of TGF-ß signaling (P = .0129). Patterns of TGF-ß signaling correlated with activation of the DNA damage response and sirtuin signaling pathways. HepG2, SNU398, and SNU475 cells that expressed the D1089Y mutant or with knockdown of SPTBN1 had increased sensitivity to DNA crosslinking agents and reduced survival compared with cells that expressed normal SPTBN1 (controls). CONCLUSIONS: In genome and transcriptome analyses of HCC samples, we found mutations in genes in the TGF-ß signaling pathway in almost 40% of samples. These correlated with changes in expression of genes in the pathways; up-regulation of genes in this pathway would contribute to inflammation and fibrosis, whereas down-regulation would indicate loss of TGF-ß tumor suppressor activity. Our findings indicate that therapeutic agents for HCCs can be effective, based on genetic features of the TGF-ß pathway; agents that block TGF-ß should be used only in patients with specific types of HCCs.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutación/genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Anciano , Carcinoma Hepatocelular/mortalidad , Estudios de Casos y Controles , Análisis por Conglomerados , Femenino , Humanos , Neoplasias Hepáticas/mortalidad , Masculino , Persona de Mediana Edad
20.
Hepatology ; 65(1): 104-121, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27775819

RESUMEN

Despite being the most common liver cancer in children, hepatoblastoma (HB) is a rare neoplasm. Consequently, few pretreatment tumors have been molecularly profiled, and there are no validated prognostic or therapeutic biomarkers for HB patients. We report on the first large-scale effort to profile pretreatment HBs at diagnosis. Our analysis of 88 clinically annotated HBs revealed three risk-stratifying molecular subtypes that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways: high-risk tumors were characterized by up-regulated nuclear factor, erythroid 2-like 2 activity; high lin-28 homolog B, high mobility group AT-hook 2, spalt-like transcription factor 4, and alpha-fetoprotein expression; and high coordinated expression of oncofetal proteins and stem-cell markers, while low-risk tumors had low lin-28 homolog B and lethal-7 expression and high hepatic nuclear factor 1 alpha activity. CONCLUSION: Analysis of immunohistochemical assays using antibodies targeting these genes in a prospective study of 35 HBs suggested that these candidate biomarkers have the potential to improve risk stratification and guide treatment decisions for HB patients at diagnosis; our results pave the way for clinical collaborative studies to validate candidate biomarkers and test their potential to improve outcome for HB patients. (Hepatology 2017;65:104-121).


Asunto(s)
Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Regulación Neoplásica de la Expresión Génica , Genómica , Hepatoblastoma/clasificación , Humanos , Neoplasias Hepáticas/clasificación , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA