Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Drug Metab Dispos ; 36(1): 24-35, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17908924

RESUMEN

Brasofensine is an inhibitor of the synaptic dopamine transporter. These studies were conducted to characterize the pharmacokinetics, absolute bioavailability, disposition, and metabolism of brasofensine after i.v. and/or p.o. administrations of [(14)C]brasofensine in rats (1.5 mg/kg i.v., 4 mg/kg p.o.) and monkeys (4 mg i.v., 12 mg p.o.) and humans (50 mg p.o.). Brasofensine was rapidly absorbed after p.o. administration in rats and monkeys, with peak plasma concentrations occurring 0.5 to 1 h but 3 to 8 h for brasofensine in humans. Plasma terminal elimination half-lives were approximately 2 h in rats, approximately 4 h in monkeys, and approximately 24 h in humans. Total body clearance and steady-state volume of distribution values were 199 ml/min/kg and 24 l/kg, respectively, in the rat and 32 ml/min/kg and 46 l/kg, respectively, in the monkey. Absolute bioavailability was 7% in rats and 0.8% in monkeys. After a single p.o. dose, urinary excretion of radioactivity accounted for 20% of the administered dose in rats, 70% in monkeys, and 86% in humans, with the remainder excreted into the feces. Brasofensine had extensive first-pass metabolism following p.o. administration in humans, monkeys, and rats. It primarily underwent O- and N-demethylation and isomerization. Some of the desmethyl metabolites were further converted to glucuronides. These primary metabolites and glucuronides of demethyl brasofensine (M1 and M2) were major circulating metabolites in humans and were also observed in rat and monkey plasma.


Asunto(s)
Inhibidores de Captación de Dopamina/farmacocinética , Compuestos Heterocíclicos con 2 Anillos/farmacocinética , Oximas/farmacocinética , Administración Oral , Animales , Radioisótopos de Carbono , Inhibidores de Captación de Dopamina/sangre , Inhibidores de Captación de Dopamina/metabolismo , Inhibidores de Captación de Dopamina/orina , Compuestos Heterocíclicos con 2 Anillos/sangre , Compuestos Heterocíclicos con 2 Anillos/metabolismo , Compuestos Heterocíclicos con 2 Anillos/orina , Humanos , Inyecciones Intravenosas , Macaca fascicularis , Masculino , Tasa de Depuración Metabólica , Oximas/sangre , Oximas/metabolismo , Oximas/orina , Ratas , Ratas Long-Evans , Especificidad de la Especie , Distribución Tisular
2.
Rapid Commun Mass Spectrom ; 17(15): 1723-34, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12872277

RESUMEN

Selective, accurate, and reproducible liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the determination of mevalonic acid, an intermediate in the biosynthesis of cholesterol and therefore a useful biomarker in the development of cholesterol lowering drugs, in human plasma and urine. A hepta-deuterated analog of mevalonic acid was used as the internal standard. For both methods, calibration standards were prepared in water, instead of human plasma and urine, due to unacceptably high levels of endogenous mevalonic acid. The lower quality control (QC) samples were prepared in water while the higher QC samples were prepared in the biological matrices. For the isolation/purification of mevalonic acid from the plasma and urine matrices, the samples were first acidified to convert the acid analyte into its lactone form. For the plasma samples, the lactone analyte was retained on and then eluted off a polymeric solid-phase extraction (SPE) sorbent. For the urine method, the sample containing the lactone analyte was passed through a C-18 SPE column, which did not retain the analyte, with the subsequent analyte retention on and then elution off a polymeric SPE sorbent. Chromatographic separation was achieved isocratically on a polar-endcapped C-18 analytical column with a water/methanol mobile phase containing 0.5 mM formic acid. Detection was by negative-ion electrospray tandem mass spectrometry. The standard curve range was 0.500-20.0 ng/mL for the plasma method and 25.0-1,000 ng/mL for the urine method. Excellent accuracy and precision were obtained for both methods at all concentration levels tested. It was interesting to note that for certain batches of urine, when a larger sample volume was used for analysis, a high degree of matrix effect was observed which resulted not only in the attenuation of the absolute response, but also in a change of analyte/internal standard response ratio. This demonstrated that, under certain conditions, the use of a stable isotope analog internal standard does not, contrary to conventional thinking, guarantee the constancy of the analyte/internal response ratio, which is a prerequisite for a rugged bioanalytical method. On the other hand, under conditions where the sample matrix does not have such a deleterious effect, we have found that a stable isotope analog could serve as a surrogate (substitute) analyte. Thus, we have shown that using calibration standards prepared by spiking plasma with tri-deuterated or tetra-deuterated mevalonic acid, instead of mevalonic acid itself (the analyte), plasma QC samples that contain mevalonic acid can be successfully analyzed for the accurate and precise quantitation of mevalonic acid. The use of a surrogate analyte provides the opportunity to gauge the daily performance of the method for the low concentration levels prepared in the biological matrix, which otherwise is not achievable because of the endogenous concentrations of the analyte in the biological matrices.


Asunto(s)
Cromatografía Liquida/métodos , Ácido Mevalónico/sangre , Ácido Mevalónico/orina , Espectrometría de Masa por Ionización de Electrospray/métodos , Humanos , Ácido Mevalónico/química , Estándares de Referencia , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA