Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 141(6): 609-619, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351239

RESUMEN

Children living in poverty experience excessive relapse and death from newly diagnosed acute lymphoblastic leukemia (ALL). The influence of household poverty and neighborhood social determinants on outcomes from chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory (r/r) leukemia is poorly described. We identified patients with r/r CD19+ ALL/lymphoblastic lymphoma treated on CD19-directed CAR T-cell clinical trials or with commercial tisagenlecleucel from 2012 to 2020. Socioeconomic status (SES) was proxied at the household level, with poverty exposure defined as Medicaid-only insurance. Low-neighborhood opportunity was defined by the Childhood Opportunity Index. Among 206 patients aged 1 to 29, 35.9% were exposed to household poverty, and 24.9% had low-neighborhood opportunity. Patients unexposed to household poverty or low-opportunity neighborhoods were more likely to receive CAR T-cell therapy with a high disease burden (>25%), a disease characteristic associated with inferior outcomes, as compared with less advantaged patients (38% vs 30%; 37% vs 26%). Complete remission (CR) rate was 93%, with no significant differences by household poverty (P = .334) or neighborhood opportunity (P = .504). In multivariate analysis, patients from low-opportunity neighborhoods experienced an increased hazard of relapse as compared with others (P = .006; adjusted hazard ratio [HR], 2.3; 95% confidence interval [CI], 1.3-4.1). There was no difference in hazard of death (P = .545; adjusted HR, 1.2; 95% CI, 0.6-2.4). Among children who successfully receive CAR T-cell therapy, CR and overall survival are equitable regardless of proxied SES and neighborhood opportunity. Children from more advantaged households and neighborhoods receive CAR T-cell therapy with a higher disease burden. Investigation of multicenter outcomes and access disparities outside of clinical trial settings is warranted.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Niño , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Recurrencia , Antígenos CD19 , Pobreza
2.
Proc Natl Acad Sci U S A ; 119(26): e2204581119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727988

RESUMEN

The brain microcirculation is increasingly viewed as a potential target for disease-modifying drugs in the treatment of Alzheimer's disease patients, reflecting a growing appreciation of evidence that cerebral blood flow is compromised in such patients. However, the pathogenic mechanisms in brain resistance arteries underlying blood flow defects have not yet been elucidated. Here we probed the roles of principal vasodilatory pathways in cerebral arteries using the APP23 mouse model of Alzheimer's disease, in which amyloid precursor protein is increased approximately sevenfold, leading to neuritic plaques and cerebrovascular accumulation of amyloid-ß similar to those in patients with Alzheimer's disease. Pial arteries from APP23 mice (18 mo old) exhibited enhanced pressure-induced (myogenic) constriction because of a profound reduction in ryanodine receptor-mediated, local calcium-release events ("Ca2+ sparks") in arterial smooth muscle cells and a consequent decrease in the activity of large-conductance Ca2+-activated K+ (BK) channels. The ability of the endothelial cell inward rectifier K+ (Kir2.1) channel to cause dilation was also compromised. Acute application of amyloid-ß 1-40 peptide to cerebral arteries from wild-type mice partially recapitulated the BK dysfunction seen in APP23 mice but had no effect on Kir2.1 function. If mirrored in human Alzheimer's disease, these tandem defects in K+ channel-mediated vasodilation could account for the clinical cerebrovascular presentation seen in patients: reduced blood flow and crippled functional hyperemia. These data direct future research toward approaches that reverse this dual vascular channel dysfunction, with the ultimate aim of restoring healthy cerebral blood flow and improving clinical outcomes.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Señalización del Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio , Músculo Liso Vascular , Miocitos del Músculo Liso , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/irrigación sanguínea , Arterias Cerebrales/metabolismo , Modelos Animales de Enfermedad , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Vasodilatación
3.
Ann Rheum Dis ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38849152

RESUMEN

OBJECTIVES: We report the safety, tolerability and efficacy of tofacitinib in patients with juvenile idiopathic arthritis (JIA) in an ongoing long-term extension (LTE) study. METHODS: Patients (2-<18 years) with JIA who completed phase 1/3 index studies or discontinued for reasons excluding treatment-related serious adverse events (AEs) entered the LTE study and received tofacitinib 5 mg two times per day or equivalent weight-based doses. Safety outcomes included AEs, serious AEs and AEs of special interest. Efficacy outcomes included improvement since tofacitinib initiation per the JIA-American College of Rheumatology (ACR)70/90 criteria, JIA flare rate and disease activity measured by Juvenile Arthritis Disease Activity Score (JADAS)27, with inactive disease corresponding to JADAS ≤1.0. RESULTS: Of 225 patients with JIA (median (range) duration of treatment, 41.6 (1-103) months), 201 (89.3%) had AEs; 34 (15.1%) had serious AEs. 10 patients developed serious infections; three had herpes zoster. Two patients newly developed uveitis. Among patients with polyarticular course JIA, JIA-ACR70/90 response rates were 60.0% (78 of 130) and 33.6% (47 of 140), respectively, at month 1, and generally improved over time. JIA flare events generally occurred in <5% of patients through to month 48. Observed mean (SE) JADAS27 was 22.0 (0.6) at baseline, 6.2 (0.7) at month 1 and 2.8 (0.5) at month 48, with inactive disease in 28.8% (36 of 125) of patients at month 1 and 46.8% (29 of 82) at month 48. CONCLUSIONS: In this interim analysis of LTE study data in patients with JIA, safety findings were consistent with the known profile of tofacitinib, and efficacy was maintained up to month 48. TRIAL REGISTRATION NUMBER: NCT01500551.

4.
Mol Pharm ; 20(9): 4546-4558, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37578286

RESUMEN

Delamanid (DLM) is a hydrophobic small molecule therapeutic used to treat drug-resistant tuberculosis (DR-TB). Due to its hydrophobicity and resulting poor aqueous solubility, formulation strategies such as amorphous solid dispersions (ASDs) have been investigated to enhance its aqueous dissolution kinetics and thereby improve oral bioavailability. However, ASD formulations are susceptible to temperature- and humidity-induced phase separation and recrystallization under harsh storage conditions typically encountered in areas with high tuberculosis incidence. Nanoencapsulation represents an alternative formulation strategy to increase aqueous dissolution kinetics while remaining stable at elevated temperature and humidity. The stabilizer layer coating the nanoparticle drug core limits the formation of large drug domains by diffusion during storage, representing an advantage over ASDs. Initial attempts to form DLM-loaded nanoparticles via precipitation-driven self-assembly were unsuccessful, as the trifluoromethyl and nitro functional groups present on DLM were thought to interfere with surface stabilizer attachment. Therefore, in this work, we investigated the nanoencapsulation of DLM via emulsification, avoiding the formation of a solid drug core and instead keeping DLM dissolved in a dichloromethane dispersed phase during nanoparticle formation. Initial emulsion formulation screening by probe-tip ultrasonication revealed that a 1:1 mass ratio of lecithin and HPMC stabilizers formed 250 nm size-stable emulsion droplets with 40% DLM loading. Scale-up studies were performed to produce nearly identical droplet size distribution at larger scale using high-pressure homogenization, a continuous and industrially scalable technique. The resulting emulsions were spray-dried to form a dried powder, and in vitro dissolution studies showed dramatically enhanced dissolution kinetics compared to both as-received crystalline DLM and micronized crystalline DLM, owing to the increased specific surface area and partially amorphous character of the DLM-loaded nanoparticles. Solid-state NMR and dissolution studies showed good physical stability of the emulsion powders during accelerated stability testing (50 °C/75% RH, open vial).


Asunto(s)
Nanopartículas , Tuberculosis Bucal , Humanos , Emulsiones , Nanopartículas/química , Solubilidad , Excipientes/química , Agua/química , Tamaño de la Partícula
5.
Environ Sci Technol ; 57(45): 17212-17224, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37916778

RESUMEN

The process of carbon dioxide capture typically requires a large amount of energy for the separation of carbon dioxide from other gases, which has been a major barrier to the widespread deployment of carbon capture technologies. Innovation of carbon dioxide adsorbents is herein vital for the attainment of a sustainable carbon capture process. In this study, we investigated the electrified synthesis and rejuvenation of calcium-based layered double hydroxides (Ca-based LDHs) as solid adsorbents for CO2. We discovered that the particle morphology and phase purity of the LDHs, along with the presence of secondary phases, can be controlled by tuning the current density during electrodeposition on a porous carbon substrate. The change in phase composition during carbonation and calcination was investigated to unveil the effect of different intercalated anions on the surface basicity and thermal stability of Ca-based LDHs. By decoupling the adsorption of water and CO2, we showed that the adsorbed water largely promoted CO2 adsorption, most likely through a sequential dissolution and reaction pathway. A carbon capture capacity of 4.3 ± 0.5 mmol/g was measured at 30 °C and relative humidity of 40% using 10 vol % CO2 in nitrogen as the feed stream. After CO2 capture occurred, the thermal regeneration step was carried out by directly passing an electric current through the conductive carbon substrate, known as the Joule-heating effect. CO2 was found to start desorbing from the Ca-based LDHs at a temperature as low as 220 °C as opposed to the temperature above 700 °C required for calcium carbonate that forms as part of the Ca-looping capture process. Finally, we evaluated the cumulative energy demand and environmental impact of the LDH-based capture process using a life cycle assessment. We identified the most environmentally concerning step in the process and concluded that the postcombustion CO2 capture using LDH could be advantageous compared with existing technologies.


Asunto(s)
Dióxido de Carbono , Hidróxidos , Dióxido de Carbono/química , Gases , Temperatura , Agua
6.
Environ Sci Technol ; 57(16): 6485-6493, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37043626

RESUMEN

Biomass pyrolysis within the alkaline molten salt is attractive due to its ability to achieve high hydrogen yield under relatively mild conditions. However, poor contact between biomass, especially the biomass pellet, and hydroxide during the slow heating process, as well as low reaction temperatures, become key factors limiting the hydrogen production. To address these challenges, fast pyrolysis of the algae pellet in molten NaOH-Na2CO3 was conducted at 550, 650, and 750 °C. Algae were chosen as feedstock for their high photosynthetic efficiency and growth rate, and the concept of coupling molten salt with concentrated solar energy was proposed to address the issue of high energy consumption at high temperatures. At 750 °C, the pollutant gases containing Cl and S were completely removed, and the HCN removal rate reached 44.92%. During the continuous pyrolysis process, after a slight increase, the hydrogen yield remained stable at 71.48 mmol/g-algae and constituted 86.10% of the gas products, and a minimum theoretical hydrogen production efficiency of algae can reach 84.86%. Most importantly, the evolution of physicochemical properties of molten NaOH-Na2CO3 was revealed for the first time. Combined with the conversion characteristics of feedstock and gas products, this study provides practical guidance for large-scale application of molten salt including feedstock, operation parameters, and post-treatment process.


Asunto(s)
Gases , Pirólisis , Hidróxido de Sodio , Calor , Cloruro de Sodio , Hidrógeno , Biomasa
7.
J Neurosci ; 41(13): 3025-3038, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33597269

RESUMEN

Alzheimer's disease is a devastating neurodegenerative disease with a dramatically increasing prevalence and no disease-modifying treatment. Inflammatory lifestyle factors increase the risk of developing Alzheimer's disease. Zinc deficiency is the most prevalent malnutrition in the world and may be a risk factor for Alzheimer's disease potentially through enhanced inflammation, although evidence for this is limited. Here we provide epidemiological evidence suggesting that zinc supplementation was associated with reduced risk and slower cognitive decline, in people with Alzheimer's disease and mild cognitive impairment. Using the APP/PS1 mouse model of Alzheimer's disease fed a control (35 mg/kg zinc) or diet deficient in zinc (3 mg/kg zinc), we determined that zinc deficiency accelerated Alzheimer's-like memory deficits without modifying amyloid ß plaque burden in the brains of male mice. The NLRP3-inflammasome complex is one of the most important regulators of inflammation, and we show here that zinc deficiency in immune cells, including microglia, potentiated NLRP3 responses to inflammatory stimuli in vitro, including amyloid oligomers, while zinc supplementation inhibited NLRP3 activation. APP/PS1 mice deficient in NLRP3 were protected against the accelerated cognitive decline with zinc deficiency. Collectively, this research suggests that zinc status is linked to inflammatory reactivity and may be modified in people to reduce the risk and slow the progression of Alzheimer's disease.SIGNIFICANCE STATEMENT Alzheimer's disease is a common condition mostly affecting the elderly. Zinc deficiency is also a global problem, especially in the elderly and also in people with Alzheimer's disease. Zinc deficiency contributes to many clinical disorders, including immune dysfunction. Inflammation is known to contribute to the risk and progression of Alzheimer's disease; thus, we hypothesized that zinc status would affect Alzheimer's disease progression. Here we show that zinc supplementation reduced the prevalence and symptomatic decline in people with Alzheimer's disease. In an animal model of Alzheimer's disease, zinc deficiency worsened cognitive decline because of an enhancement in NLRP3-driven inflammation. Overall, our data suggest that zinc status affects Alzheimer's disease progression, and that zinc supplementation could slow the rate of cognitive decline.


Asunto(s)
Enfermedad de Alzheimer/sangre , Disfunción Cognitiva/sangre , Progresión de la Enfermedad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Zinc/sangre , Adulto , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/dietoterapia , Animales , Células Cultivadas , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/dietoterapia , Suplementos Dietéticos , Femenino , Estudios de Seguimiento , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Zinc/administración & dosificación , Zinc/deficiencia
8.
N Engl J Med ; 380(5): 447-458, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30365356

RESUMEN

BACKGROUND: Intravenous iron is a standard treatment for patients undergoing hemodialysis, but comparative data regarding clinically effective regimens are limited. METHODS: In a multicenter, open-label trial with blinded end-point evaluation, we randomly assigned adults undergoing maintenance hemodialysis to receive either high-dose iron sucrose, administered intravenously in a proactive fashion (400 mg monthly, unless the ferritin concentration was >700 µg per liter or the transferrin saturation was ≥40%), or low-dose iron sucrose, administered intravenously in a reactive fashion (0 to 400 mg monthly, with a ferritin concentration of <200 µg per liter or a transferrin saturation of <20% being a trigger for iron administration). The primary end point was the composite of nonfatal myocardial infarction, nonfatal stroke, hospitalization for heart failure, or death, assessed in a time-to-first-event analysis. These end points were also analyzed as recurrent events. Other secondary end points included death, infection rate, and dose of an erythropoiesis-stimulating agent. Noninferiority of the high-dose group to the low-dose group would be established if the upper boundary of the 95% confidence interval for the hazard ratio for the primary end point did not cross 1.25. RESULTS: A total of 2141 patients underwent randomization (1093 patients to the high-dose group and 1048 to the low-dose group). The median follow-up was 2.1 years. Patients in the high-dose group received a median monthly iron dose of 264 mg (interquartile range [25th to 75th percentile], 200 to 336), as compared with 145 mg (interquartile range, 100 to 190) in the low-dose group. The median monthly dose of an erythropoiesis-stimulating agent was 29,757 IU in the high-dose group and 38,805 IU in the low-dose group (median difference, -7539 IU; 95% confidence interval [CI], -9485 to -5582). A total of 320 patients (29.3%) in the high-dose group had a primary end-point event, as compared with 338 (32.3%) in the low-dose group (hazard ratio, 0.85; 95% CI, 0.73 to 1.00; P<0.001 for noninferiority; P=0.04 for superiority). In an analysis that used a recurrent-events approach, there were 429 events in the high-dose group and 507 in the low-dose group (rate ratio, 0.77; 95% CI, 0.66 to 0.92). The infection rate was the same in the two groups. CONCLUSIONS: Among patients undergoing hemodialysis, a high-dose intravenous iron regimen administered proactively was superior to a low-dose regimen administered reactively and resulted in lower doses of erythropoiesis-stimulating agent being administered. (Funded by Kidney Research UK; PIVOTAL EudraCT number, 2013-002267-25 .).


Asunto(s)
Anemia/tratamiento farmacológico , Sacarato de Óxido Férrico/administración & dosificación , Hematínicos/administración & dosificación , Fallo Renal Crónico/terapia , Diálisis Renal/efectos adversos , Administración Intravenosa , Adulto , Anciano , Anemia/etiología , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Femenino , Sacarato de Óxido Férrico/efectos adversos , Ferritinas/sangre , Estudios de Seguimiento , Hematínicos/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Método Simple Ciego , Transferrina/análisis
9.
Environ Sci Technol ; 56(2): 1289-1299, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34982541

RESUMEN

More than 70% of the population without access to safe drinking water lives in remote and off-grid areas. Inspired by natural plant transpiration, we designed and tested in this study an array of scalable three-dimensional (3D) engineered trees made of natural wood for continuous water desalination to provide affordable and clean drinking water. The trees took advantage of capillary action in the wood xylems and lifted water more than 1 foot off the ground with or without solar irradiation. This process overcame some major challenges of popular solar-driven water evaporation and water harvesting, such as intermittent operation, low water production rate, and system scaling. The trade-off between energy transfer and system footprint was tackled by optimizing the interspacing between the trees. The scaled system has a ratio of surface area (vapor generation) to project area (water transport) up to 118, significantly higher than the prevailing flat-sheet design. The extensive surface area evaporated water at a temperature cooler than the surrounding air, drawing on multiple environmental energy sources including solar, wind, or ambient heat in the air and realized continuous operation. The total energy for evaporation reached over 300% of the one-sun irradiance, enabling a freshwater production rate of 4.8 L m-2 h-1 from an array of 16 trees in an enclosed room and 14 L m-2 h-1 under a 3 m/s airflow. Furthermore, we found that the ambient heat in the air contributed 60%-70% of the total latent heat of vaporization when energy sources were decoupled. During long-term desalination tests, the engineered trees demonstrated a self-cleaning mechanism with daily cycles of salt accumulation and dissolution. Combining the quantification from an evaporation model and meteorology data covering the globe, we also demonstrated that the 3D engineered trees can be of particular interest for sustainable desalination in the Middle East and North Africa (MENA) regions.


Asunto(s)
Agua Potable , Energía Solar , Purificación del Agua , Luz Solar , Árboles
10.
Environ Sci Technol ; 56(22): 15261-15272, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36269897

RESUMEN

Enhanced weathering (EW) is one of the most promising negative emissions technologies urgently needed to limit global warming to at least below 2 °C, a goal recently reaffirmed at the UN Global Climate Change conference (i.e., COP26). EW relies on the accelerated dissolution of crushed silicate rocks applied to soils and is considered a sustainable solution requiring limited technology. While EW has a high theoretical potential of sequestering CO2, research is still needed to provide accurate estimates of carbon (C) sequestration when applying different silicate materials across distinct climates and major soil types in combination with a variety of plants. Here we elaborate on fundamental advances that must be addressed before EW can be extensively adopted. These include identifying the most suitable environmental conditions, improving estimates of field dissolution rates and efficacy of CO2 removal, and identifying alternative sources of silicate materials to meet future EW demands. We conclude with considerations on the necessity of integrated modeling-experimental approaches to better coordinate future field experiments and measurements of CO2 removal, as well as on the importance of seamlessly coordinating EW with cropland and forest management.


Asunto(s)
Dióxido de Carbono , Tiempo (Meteorología) , Dióxido de Carbono/análisis , Cambio Climático , Suelo , Silicatos , Secuestro de Carbono
11.
Mult Scler ; 27(11): 1657-1678, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33876986

RESUMEN

BACKGROUND: Fatigue is a common, debilitating symptom of multiple sclerosis (MS) without a current standardised treatment. OBJECTIVE: The aim of this systematic review with network meta-analyses was to estimate the relative effectiveness of both fatigue-targeted and non-targeted exercise, behavioural and combined (behavioural and exercise) interventions. METHODS: Nine electronic databases up to August 2018 were searched, and 113 trials (n = 6909) were included: 34 were fatigue-targeted and 79 non-fatigue-targeted trials. Intervention characteristics were extracted using the Template for Intervention Description and Replication guidelines. Certainty of evidence was assessed using GRADE. RESULTS: Pairwise meta-analyses showed that exercise interventions demonstrated moderate to large effects across subtypes regardless of treatment target, with the largest effect for balance exercise (SMD = 0.84). Cognitive behavioural therapies (CBTs) showed moderate to large effects (SMD = 0.60), with fatigue-targeted treatments showing larger effects than those targeting distress. Network meta-analysis showed that balance exercise performed significantly better compared to other exercise and behavioural intervention subtypes, except CBT. CBT was estimated to be superior to energy conservation and other behavioural interventions. Combined exercise also had a moderate to large effect. CONCLUSION: Treatment recommendations for balance and combined exercise are tentative as the certainty of the evidence was moderate. The certainty of the evidence for CBT was high.


Asunto(s)
Esclerosis Múltiple , Ejercicio Físico , Terapia por Ejercicio , Fatiga/etiología , Fatiga/terapia , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/terapia , Metaanálisis en Red
12.
J Am Soc Nephrol ; 31(5): 1118-1127, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32253271

RESUMEN

BACKGROUND: Experimental and observational studies have raised concerns that giving intravenous (IV) iron to patients, such as individuals receiving maintenance hemodialysis, might increase the risk of infections. The Proactive IV Iron Therapy in Haemodialysis Patients (PIVOTAL) trial randomized 2141 patients undergoing maintenance hemodialysis for ESKD to a high-dose or a low-dose IV iron regimen, with a primary composite outcome of all-cause death, heart attack, stroke, or hospitalization for heart failure. Comparison of infection rates between the two groups was a prespecified secondary analysis. METHODS: Secondary end points included any infection, hospitalization for infection, and death from infection; we calculated cumulative event rates for these end points. We also interrogated the interaction between iron dose and vascular access (fistula versus catheter). RESULTS: We found no significant difference between the high-dose IV iron group compared with the lose-dose group in event rates for all infections (46.5% versus 45.5%, respectively, which represented incidences of 63.3 versus 69.4 per 100 patient years, respectively); rates of hospitalization for infection (29.6% versus 29.3%, respectively) also did not differ. We did find a significant association between risk of a first cardiovascular event and any infection in the previous 30 days. Compared with patients undergoing dialysis with an arteriovenous fistula, those doing so via a catheter had a higher incidence of having any infection, hospitalization for infection, or fatal infection, but IV iron dosing had no effect on these outcomes. CONCLUSIONS: The high-dose and low-dose IV iron groups exhibited identical infection rates. Risk of a first cardiovascular event strongly associated with a recent infection.


Asunto(s)
Infecciones/etiología , Hierro/administración & dosificación , Diálisis Renal/efectos adversos , Anciano , Derivación Arteriovenosa Quirúrgica/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Infecciones Relacionadas con Catéteres/epidemiología , Infecciones Relacionadas con Catéteres/etiología , Causas de Muerte , Infección Hospitalaria/epidemiología , Relación Dosis-Respuesta a Droga , Femenino , Hospitalización , Humanos , Infecciones/epidemiología , Infusiones Intravenosas , Hierro/uso terapéutico , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Diálisis Renal/instrumentación , Análisis de Supervivencia
13.
J Transl Med ; 17(1): 97, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902103

RESUMEN

BACKGROUND: OZ439 is a new chemical entity which is active against drug-resistant malaria and shows potential as a single-dose cure. However, development of an oral formulation with desired exposure has proved problematic, as OZ439 is poorly soluble (BCS Class II drug). In order to be feasible for low and middle income countries (LMICs), any process to create or formulate such a therapeutic must be inexpensive at scale, and the resulting formulation must survive without refrigeration even in hot, humid climates. We here demonstrate the scalability and stability of a nanoparticle (NP) formulation of OZ439. Previously, we applied a combination of hydrophobic ion pairing and Flash NanoPrecipitation (FNP) to formulate OZ439 NPs 150 nm in diameter using the inexpensive stabilizer hydroxypropyl methylcellulose acetate succinate (HPMCAS). Lyophilization was used to process the NPs into a dry form, and the powder's in vitro solubilization was over tenfold higher than unprocessed OZ439. METHODS: In this study, we optimize our previous formulation using a large-scale multi-inlet vortex mixer (MIVM). Spray drying is a more scalable and less expensive operation than lyophilization and is, therefore, optimized to produce dry powders. The spray dried powders are then subjected to a series of accelerated aging stability trials at high temperature and humidity conditions. RESULTS: The spray dried OZ439 powder's dissolution kinetics are superior to those of lyophilized NPs. The powder's OZ439 solubilization profile remains constant after 1 month in uncapped vials in an oven at 50 °C and 75% RH, and for 6 months in capped vials at 40 °C and 75% RH. In fasted-state intestinal fluid, spray dried NPs achieved 80-85% OZ439 dissolution, to a concentration of 430 µg/mL, within 3 h. In fed-state intestinal fluid, 95-100% OZ439 dissolution is achieved within 1 h, to a concentration of 535 µg/mL. X-ray powder diffraction and differential scanning calorimetry profiles similarly remain constant over these periods. CONCLUSIONS: The combined nanofabrication and drying process described herein, which utilizes two continuous unit operations that can be operated at scale, is an important step toward an industrially-relevant method of formulating the antimalarial OZ439 into a single-dose oral form with good stability against humidity and temperature.


Asunto(s)
Adamantano/análogos & derivados , Malaria/tratamiento farmacológico , Vaporizadores Orales , Peróxidos/administración & dosificación , Polvos , Adamantano/administración & dosificación , Adamantano/farmacocinética , Administración Oral , Química Farmacéutica , Desecación , Estabilidad de Medicamentos , Liofilización , Humanos , Nanopartículas/química , Nebulizadores y Vaporizadores , Peróxidos/farmacocinética , Solubilidad , Agua/química
14.
Soft Matter ; 15(11): 2400-2410, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30776040

RESUMEN

More than 40% of newly developed drug molecules are highly hydrophobic and, thus, suffer from low bioavailability. Kinetically trapping the drug as a nanoparticle in an amorphous state enhances solubility. However, enhanced solubility can be compromised by subsequent recrystallization from the amorphous state during drying processes. We combine Flash NanoPrecipitation (FNP) to generate nanoparticles with spray-drying to produce stable solid powders. We demonstrate that the continuous nanofabrication platform for nanoparticle synthesis and recovery does not compromise the dissolution kinetics of the drug. Lumefantrine, an anti-malaria drug, is highly hydrophobic with low bioavailability. Increasing the bioavailability of lumefantrine has the potential to reduce the dose and number of required administrations per treatment, thus reducing cost and increasing patient compliance. The low melting temperature of lumefantrine (Tm = 130 °C) makes the drying of amorphous nanoparticles at elevated temperatures potentially problematic. Via FNP, we produced 200-400 nm nanoparticles using hydroxypropyl methylcellulose acetate succinate (HPMCAS), lecithin phospholipid, and zein protein stabilizers. Zein nanoparticles were spray-dried at 100 °C and 120 °C to study the effect of the drying temperature. For zein powders, at two hours the dissolution kinetics under fasted conditions reached 85% release for the 100 °C sample, but only 60% release for the 120 °C sample. Powder X-ray diffraction, differential scanning calorimetry, and solid state nuclear magnetic resonance indicate that the lumefantrine in the nanoparticle core is amorphous for samples spray-dried at 100 °C. Dissolution under fed state conditions showed similar release kinetics for both temperatures, with 90-95% release at two hours. Zein and HPMCAS nanoparticles spray-dried at 100 °C showed release profiles in fasted and fed state media that are identical to those of lyophilized samples, i.e. those dried at cryogenic conditions where no transformation to the crystalline state can occur. Thus, spray drying 30 °C below the melting transition of lumefantrine is sufficient to maintain the amorphous state. These inexpensive formulations have potential to be developed into future therapies for malaria, and the results also highlight the potential of combining FNP and spray-drying as a versatile platform to assemble and rapidly recover amorphous nanoparticles in a solid dosage form.

15.
Phys Chem Chem Phys ; 21(20): 10277-10292, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31070223

RESUMEN

In this study, in situ quasi-elastic neutron scattering (QENS) has been employed to probe the water dynamics and reaction mechanisms occurring during the formation of NaOH- and Na2SiO3-activated slags, an important class of low-CO2 cements, in conjunction with isothermal conduction calorimetry (ICC), Fourier transform infrared spectroscopy (FTIR) analysis and N2 sorption measurements. We show that the single ICC reaction peak in the NaOH-activated slag is accompanied with a transformation of free water to bound water (from QENS analysis), which directly signals formation of a sodium-containing aluminum-substituted calcium-silicate-hydrate (C-(N)-A-S-H) gel, as confirmed by FTIR. In contrast, the Na2SiO3-activated slag sample exhibits two distinct reaction peaks in the ICC data, where the first reaction peak is associated with conversion of constrained water to bound and free water, and the second peak is accompanied by conversion of free water to bound and constrained water (from QENS analysis). The second conversion is attributed to formation of the main reaction product (i.e., C-(N)-A-S-H gel) as confirmed by FTIR and N2 sorption data. Analysis of the QENS, FTIR and N2 sorption data together with thermodynamic information from the literature explicitly shows that the first reaction peak is associated with the formation of an initial gel (similar to C-(N)-A-S-H gel) that is governed by the Na+ ions and silicate species in Na2SiO3 solution and the dissolved Ca/Al species from slag. Hence, this study exemplifies the power of in situ QENS, when combined with laboratory-based characterization techniques, in elucidating the water dynamics and associated chemical mechanisms occurring in complex materials, and has provided important mechanistic insight on the early-age reactions occurring during formation of two alkali-activated slags.

16.
Nano Lett ; 18(3): 1786-1793, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29432023

RESUMEN

Greenhouse gas emissions originating from fossil fuel combustion contribute significantly to global warming, and therefore the design of novel materials that efficiently capture CO2 can play a crucial role in solving this challenge. Here, we show that reducing the dimensionality of bulk crystalline portlandite results in a stable monolayer material, named portlandene, that is highly effective at capturing CO2. On the basis of theoretical analysis comprised of ab initio quantum mechanical calculations and force-field molecular dynamics simulations, we show that this single-layer phase is robust and maintains its stability even at high temperatures. The chemical activity of portlandene is seen to further increase upon defect engineering of its surface using vacancy sites. Defect-containing portlandene is capable of separating CO and CO2 from a syngas (CO/CO2/H2) stream, yet is inert to water vapor. This selective behavior and the associated mechanisms have been elucidated by examining the electronic structure, local charge distribution, and bonding orbitals of portlandene. Additionally, unlike conventional CO2 capturing technologies, the regeneration process of portlandene does not require high temperature heat treatment because it can release the captured CO2 by application of a mild external electric field, making portlandene an ideal CO2 capturing material for both pre- and postcombustion processes.

17.
Am J Nephrol ; 48(4): 260-268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30304714

RESUMEN

BACKGROUND: Intravenous (IV) iron supplementation is a standard maintenance treatment for hemodialysis (HD) patients, but the optimum dosing regimen is unknown. METHODS: PIVOTAL (Proactive IV irOn Therapy in hemodiALysis patients) is a multicenter, open-label, blinded endpoint, randomized controlled (PROBE) trial. Incident HD adults with a serum ferritin < 400 µg/L and transferrin saturation (TSAT) levels < 30% receiving erythropoiesis-stimulating agents (ESA) were eligible. Enrolled patients were randomized to a proactive, high-dose IV iron arm (iron sucrose 400 mg/month unless ferritin > 700 µg/L and/or TSAT ≥40%) or a reactive, low-dose IV iron arm (iron sucrose administered if ferritin <200 µg/L or TSAT < 20%). We hypothesized that proactive, high-dose IV iron would be noninferior to reactive, low-dose IV iron for the primary outcome of first occurrence of nonfatal myocardial infarction (MI), nonfatal stroke, hospitalization for heart failure or death from any cause. If noninferiority is confirmed with a noninferiority limit of 1.25 for the hazard ratio of the proactive strategy relative to the reactive strategy, a test for superiority will be carried out. Secondary outcomes include infection-related endpoints, ESA dose requirements, and quality-of-life measures. As an event-driven trial, the study will continue until at least 631 primary outcome events have accrued, but the expected duration of follow-up is 2-4 years. RESULTS: Of the 2,589 patients screened across 50 UK sites, 2,141 (83%) were randomized. At baseline, 65.3% were male, the median age was 65 years, and 79% were white. According to eligibility criteria, all patients were on ESA at screening. Prior stroke and MI were present in 8 and 9% of the cohort, respectively, and 44% of patients had diabetes at baseline. Baseline data for the randomized cohort were generally concordant with recent data from the UK Renal Registry. CONCLUSIONS: PIVOTAL will provide important information about the optimum dosing of IV iron in HD patients representative of usual clinical practice. TRIAL REGISTRATION: EudraCT number: 2013-002267-25.


Asunto(s)
Anemia Ferropénica/tratamiento farmacológico , Sacarato de Óxido Férrico/administración & dosificación , Hematínicos/administración & dosificación , Fallo Renal Crónico/complicaciones , Diálisis Renal/efectos adversos , Administración Intravenosa , Anciano , Anemia Ferropénica/sangre , Anemia Ferropénica/etiología , Relación Dosis-Respuesta a Droga , Femenino , Sacarato de Óxido Férrico/efectos adversos , Ferritinas/sangre , Estudios de Seguimiento , Hematínicos/efectos adversos , Humanos , Fallo Renal Crónico/sangre , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Trombosis/inducido químicamente , Trombosis/epidemiología , Resultado del Tratamiento
18.
Phys Chem Chem Phys ; 20(13): 8593-8606, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29557431

RESUMEN

Conventional drying of colloidal materials and gels (including cement) can lead to detrimental effects due to the buildup of internal stresses as water evaporates from the nano/microscopic pores. However, for these gel materials the underlying nanoscopic alterations that are, in part, responsible for macroscopically-measured strain values (especially at low relative humidity) remain a topic of open debate in the literature. In this study, sodium-based calcium-alumino-silicate-hydrate (C-(N)-A-S-H) gel, the major binding phase of silicate-activated blast furnace slag (one type of low-CO2 cement), is investigated from a drying perspective, since it is known to suffer extensively from drying-induced microcracking. By employing in situ synchrotron X-ray total scattering measurements and pair distribution function (PDF) analysis we show that the significant contributing factor to the strain development in this material at extremely low relative humidity (0%) is the local atomic structural rearrangement of the C-(N)-A-S-H gel, including collapse of interlayer spacing and slight disintegration of the gel. Moreover, analysis of the medium range (1.0-2.2 nm) ordering in the PDF data reveals that the PDF-derived strain values are in much closer agreement (same order of magnitude) with the macroscopically measured strain data, compared to previous results based on reciprocal space X-ray diffraction data. From a mitigation standpoint, we show that small amounts of ZrO2 nanoparticles are able to actively reinforce the structure of silicate-activated slag during drying, preventing atomic level strains from developing. Mechanistically, these nanoparticles induce growth of a silica-rich gel during drying, which, via density functional theory calculations, we show is attributed to the high surface reactivity of tetragonal ZrO2.

19.
Rheumatol Int ; 38(9): 1623-1634, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29556750

RESUMEN

The aim of this systematic review was to evaluate the evidence from randomised controlled trials (RCTs) evaluating the effectiveness of interactive digital interventions (IDIs) for physical activity (PA) and health related quality of life (HRQoL) in people with Inflammatory Arthritis [rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA) axial Spondyloarthritis (AS) and psoriatic arthritis (PsA)]. Seven electronic databases identified published and unpublished studies. Two reviewers conducted independent data extraction and quality assessment using the Cochrane risk of bias tool (RoB). The primary outcome was change in objective PA after the intervention; secondary outcomes included self-reported PA and HRQoL after the intervention and objective or self-reported PA at least 1 year later. Five manuscripts, reporting four RCTs (three high and one low RoB) representing 492 (459 RA, 33 JIA) participants were included. No trials studying PsA or AS met the inclusion criteria. Interventions ranged from 6 to 52 weeks and included 3-18 Behaviour Change Techniques. Due to heterogeneity of outcomes, a narrative synthesis was conducted. No trials reported any significant between group differences in objective PA at end of intervention. Only one low RoB trial found a significant between group difference in self-reported vigorous [MD Δ 0.9 days (95% CI 0.3, 1.5); p = 0.004], but not moderate, PA in people with RA but not JIA. There were no between group differences in any other secondary outcomes. There is very limited evidence for the effectiveness of IDIs on PA and HRQoL in RA and JIA and no evidence for their effectiveness in PsA or AS.


Asunto(s)
Artritis Reumatoide/complicaciones , Ejercicio Físico/fisiología , Calidad de Vida , Espondiloartritis/complicaciones , Artritis Reumatoide/psicología , Estudios de Seguimiento , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Espondiloartritis/psicología
20.
J Virol ; 90(1): 356-67, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26468525

RESUMEN

UNLABELLED: The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8(+) cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8(+) cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8(+) cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4(+) cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8(+) and CD4(+) T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE: Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8(+) T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8(+) T cells specific for early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8(+) T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4(+) T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways.


Asunto(s)
Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/fisiología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Evasión Inmune , Glicoproteínas de Membrana/metabolismo , Ubiquitinación , Proteínas Virales/metabolismo , Línea Celular , Regulación hacia Abajo , Humanos , Complejo Mayor de Histocompatibilidad , Proteínas de la Membrana/metabolismo , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA