Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neuropsychiatry Clin Neurosci ; 33(2): 144-151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33203305

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) is effective for the motor symptoms of Parkinson's disease (PD). Although most patients benefit with minimal cognitive side effects, cognitive decline is a risk, and there is little available evidence to guide preoperative risk assessment. Visual illusions or visual hallucinations (VHs) and impulse-control behaviors (ICBs) are relatively common complications of PD and its treatment and may be a marker of more advanced disease, but their relationship with postoperative cognition has not been established. The authors aimed to determine whether any preoperative history of VHs or ICBs is associated with cognitive change after DBS. METHODS: Retrospective chart review identified 54 patients with PD who received DBS of the subthalamic nucleus or globus pallidus internus and who completed both pre- and postoperative neuropsychological testing. Linear regression models were used to assess whether any preoperative history of VHs or ICBs was associated with changes in attention, executive function, language, memory, or visuospatial cognitive domains while controlling for surgical target and duration between evaluations. RESULTS: The investigators found that a history of VHs was associated with declines in attention (b=-4.04, p=0.041) and executive function (b=-4.24, p=0.021). A history of ICBs was not associated with any significant changes. CONCLUSIONS: These results suggest that a history of VHs may increase risk of cognitive decline after DBS; thus, specific preoperative counseling and targeted remediation strategies for these patients may be indicated. In contrast, a history of ICBs does not appear to be associated with increased cognitive risk.


Asunto(s)
Disfunción Cognitiva/etiología , Estimulación Encefálica Profunda/efectos adversos , Alucinaciones/epidemiología , Enfermedad de Parkinson/terapia , Anciano , Función Ejecutiva , Femenino , Globo Pálido/fisiopatología , Humanos , Conducta Impulsiva , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas/estadística & datos numéricos , Estudios Retrospectivos , Núcleo Subtalámico/fisiopatología
2.
Neuroimage ; 199: 366-374, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31154045

RESUMEN

Deep brain stimulation (DBS) is an established and effective treatment for several movement disorders and is being developed to treat a host of neuropsychiatric disorders including epilepsy, chronic pain, obsessive compulsive disorder, and depression. However, the neural mechanisms through which DBS produces therapeutic benefits, and in some cases unwanted side effects, in these disorders are only partially understood. Non-invasive neuroimaging techniques that can assess the neural effects of active stimulation are important for advancing our understanding of the neural basis of DBS therapy. Magnetoencephalography (MEG) is a safe, passive imaging modality with relatively high spatiotemporal resolution, which makes it a potentially powerful method for examining the cortical network effects of DBS. However, the degree to which magnetic artifacts produced by stimulation and the associated hardware can be suppressed from MEG data, and the comparability between signals measured during DBS-on and DBS-off conditions, have not been fully quantified. The present study used machine learning methods in conjunction with a visual perception task, which should be relatively unaffected by DBS, to quantify how well neural data can be salvaged from artifact contamination introduced by DBS and how comparable DBS-on and DBS-off data are after artifact removal. Machine learning also allowed us to determine whether the spatiotemporal pattern of neural activity recorded during stimulation are comparable to those recorded when stimulation is off. The spatiotemporal patterns of visually evoked neural fields could be accurately classified in all 8 patients with DBS implants during both DBS-on and DBS-off conditions and performed comparably across those two conditions. Further, the classification accuracy for classifiers trained on the spatiotemporal patterns evoked during DBS-on trials and applied to DBS-off trials, and vice versa, were similar to that of the classifiers trained and tested on either trial type, demonstrating the comparability of these patterns across conditions. Together, these results demonstrate the ability of MEG preprocessing techniques, like temporal signal space separation, to salvage neural data from recordings contaminated with DBS artifacts and validate MEG as a powerful tool to study the cortical consequences of DBS.


Asunto(s)
Artefactos , Corteza Cerebral/fisiología , Estimulación Encefálica Profunda/normas , Magnetoencefalografía/normas , Enfermedad de Parkinson/terapia , Percepción Visual/fisiología , Adulto , Anciano , Corteza Cerebral/diagnóstico por imagen , Femenino , Globo Pálido/cirugía , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Análisis Espacio-Temporal , Núcleo Subtalámico/cirugía , Adulto Joven
3.
Transl Psychiatry ; 12(1): 213, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624103

RESUMEN

Patients with psychiatric symptoms, such as depression, anxiety, and visual hallucinations, may be at increased risk for adverse effects following deep brain stimulation of the subthalamic nucleus for Parkinson's disease, but there have been relatively few studies of associations between locations of chronic stimulation and neuropsychological outcomes. We sought to determine whether psychiatric history modulates associations between stimulation location within the subthalamic nucleus and postoperative affective and cognitive changes. We retrospectively identified 42 patients with Parkinson's disease who received bilateral subthalamic nucleus deep brain stimulation and who completed both pre- and postoperative neuropsychological testing. Active stimulation contacts were localized in MNI space using Lead-DBS software. Linear discriminant analysis identified vectors maximizing variance in postoperative neuropsychological changes, and Pearson's correlations were used to assess for linear relationships. Stimulation location was associated with postoperative change for only 3 of the 18 neuropsychological measures. Variation along the superioinferior (z) axis was most influential. Constraining the analysis to patients with a history of depression revealed 10 measures significantly associated with active contact location, primarily related to location along the anterioposterior (y) axis and with worse outcomes associated with more anterior stimulation. Analysis of patients with a history of anxiety revealed 5 measures with location-associated changes without a predominant axis. History of visual hallucinations was not associated with significant findings. Our results suggest that a history of depression may influence the relationship between active contact location and neuropsychological outcomes following subthalamic nucleus deep brain stimulation. These patients may be more sensitive to off-target (nonmotor) stimulation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Estimulación Encefálica Profunda/efectos adversos , Depresión/etiología , Depresión/terapia , Humanos , Enfermedad de Parkinson/terapia , Estudios Retrospectivos
4.
ACS Omega ; 5(42): 27171-27179, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33134677

RESUMEN

This study reports the long-term storage stability of a formulation of the cyanide (CN) antidote dimethyl trisulfide (DMTS). The F3-formulated DMTS was stored in glass ampules at 4, 22, and 37 °C. Over a period of one year, nine ampules (n = 3 at each temperature) were analyzed by high-performance liquid chromatography (HPLC)-UV/vis at daily time intervals in the first week, weekly time intervals in the first month, and monthly thereafter for a period of one year to determine the DMTS content. No measurable loss of DMTS was found at 4 and 22 °C, and good stability was noted up to five months for samples stored at 37 °C. At 37 °C, a 10% (M/M) decrease of DMTS was discovered at the sixth month and only 30% (M/M) of DMTS remained by the end of the study; discoloration of the formulation and the growth of new peaks in the HPLC chromatogram were also observed. To identify the unknown peaks at 37 °C, controlled oxidation studies were performed on DMTS using two strong oxidizing agents: meta-chloroperoxybenzoic acid (mCPBA) and hydrogen peroxide (H2O2). Dimethyl tetrasulfide and dimethyl pentasulfide were observed as products using both of the oxidizing agents. Dimethyl disulfide was also observed as a product of degradation, which was further oxidized to S-methyl methanethiosulfonate only when mCPBA was used. HPLC-UV/vis and gas chromatography-mass spectrometry/solid phase microextraction analysis revealed good agreement between the degradation products of the stability study at 37 °C and those of disproportionation reactions. Furthermore, at 4 and 22 °C, chromatograms were remarkably stable over the one-year study period, indicating that the F3-formulated DMTS shows excellent long-term storage stability at T ≤ 22 °C.

5.
Neurophotonics ; 5(1): 011009, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28948192

RESUMEN

Functional near-infrared spectroscopy (fNIRS) is a noninvasive brain imaging technique that uses scalp-placed light sensors to measure evoked changes in cerebral blood oxygenation. The portability, low overhead cost, and ability to use this technology under a wide range of experimental environments make fNIRS well-suited for studies involving infants and children. However, since fNIRS does not directly provide anatomical or structural information, these measurements may be sensitive to individual or group level differences associated with variations in head size, depth of the brain from the scalp, or other anatomical factors affecting the penetration of light into the head. This information is generally not available in pediatric populations, which are often the target of study for fNIRS. Anatomical magnetic resonance imaging information from 90 school-age children (5 to 11 years old) was used to quantify the expected effect on fNIRS measures of variations in cerebral and extracerebral structure. Monte Carlo simulations of light transport in tissue were used to estimate differential and partial optical pathlengths at 690, 780, 808, 830, and 850 nm and their variations with age, sex, and head size. This work provides look-up tables of these values and general guidance for future investigations using fNIRS sans anatomical information in this child population.

6.
J Neurosci Methods ; 275: 45-49, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27984100

RESUMEN

BACKGROUND: Negative emotional states resulting from concussion are of increasing concern. In the current study, we developed a model to investigate negative affect following concussion in the projectile concussive impact (PCI) model. High frequency ultrasonic vocalizations (22kHz USVs) are associated with negative affective stimuli in rats. Changes in negative affective state were examined following PCI using a mild air-puff stimulus to elicit 22kHz USVs. NEW METHOD: Forty-eight hours post-injury, animals were placed into a clean acrylic box lined with bedding. A 5min baseline recording was followed by 15 air puffs (55psi) spaced 15s apart aimed at the upper back and neck. RESULTS: Injured animals produced on average 153.5±55.13 more vocalizations than shams, vocalizing on average 4min longer than shams. Additionally, concussed animals vocalized to fewer air-puffs, exhibiting a 1.5 fold lower threshold for the expression of negative affect. COMPARISON WITH EXISTING METHODS: Studies currently used to test negative affective states following concussion in animals, such as the elevated plus maze and forced swim task have, as of yet, been unsuccessful in demonstrating injury effects in the PCI model. While the air-puff test has been applied in other fields, to our knowledge it has not been utilized to study traumatic brain injury. CONCLUSION: The current study demonstrates that the air-puff vocalization test may be a valuable tool in assessing negative mood states following concussion in rat models and may be used to evaluate novel therapies following brain injury for the treatment of mood dysfunction.


Asunto(s)
Conmoción Encefálica/psicología , Emociones , Estimulación Física/métodos , Vocalización Animal , Aire , Animales , Modelos Animales de Enfermedad , Masculino , Actividad Motora , Pruebas Psicológicas , Ratas Sprague-Dawley , Reflejo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA