Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(32): e2216141120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523525

RESUMEN

Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.


Asunto(s)
Proteínas de Caenorhabditis elegans , Sulfuro de Hidrógeno , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad , Sulfuros/metabolismo , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Factores de Transcripción GATA/metabolismo
2.
Plant Physiol ; 191(3): 2001-2011, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36560868

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in numerous physiological processes in plants, including gas exchange with the environment through the regulation of stomatal pore width. Guard cells (GCs) are pairs of specialized epidermal cells that delimit stomatal pores and have a higher mitochondrial density and metabolic activity than their neighboring cells. However, there is no clear evidence on the role of mitochondrial activity in stomatal closure induction. In this work, we showed that the mitochondrial-targeted H2S donor AP39 induces stomatal closure in a dose-dependent manner. Experiments using inhibitors of the mitochondrial electron transport chain (mETC) or insertional mutants in cytochrome c (CYTc) indicated that the activity of mitochondrial CYTc and/or complex IV are required for AP39-dependent stomatal closure. By using fluorescent probes and genetically encoded biosensors we reported that AP39 hyperpolarized the mitochondrial inner potential (Δψm) and increased cytosolic ATP, cytosolic hydrogen peroxide levels, and oxidation of the glutathione pool in GCs. These findings showed that mitochondrial-targeted H2S donors induce stomatal closure, modulate guard cell mETC activity, the cytosolic energetic and oxidative status, pointing to an interplay between mitochondrial H2S, mitochondrial activity, and stomatal closure.


Asunto(s)
Mitocondrias , Transducción de Señal , Mitocondrias/metabolismo , Estomas de Plantas/fisiología
3.
Pharmacol Res ; 203: 107180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599468

RESUMEN

Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.


Asunto(s)
Sulfuro de Hidrógeno , Mitocondrias , Enfermedades Mitocondriales , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/uso terapéutico , Humanos , Animales , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Suplementos Dietéticos , Transducción de Señal/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33431651

RESUMEN

Alzheimer's disease (AD), the most common cause of dementia and neurodegeneration in the elderly, is characterized by deterioration of memory and executive and motor functions. Neuropathologic hallmarks of AD include neurofibrillary tangles (NFTs), paired helical filaments, and amyloid plaques. Mutations in the microtubule-associated protein Tau, a major component of the NFTs, cause its hyperphosphorylation in AD. We have shown that signaling by the gaseous molecule hydrogen sulfide (H2S) is dysregulated during aging. H2S signals via a posttranslational modification termed sulfhydration/persulfidation, which participates in diverse cellular processes. Here we show that cystathionine γ-lyase (CSE), the biosynthetic enzyme for H2S, binds wild type Tau, which enhances its catalytic activity. By contrast, CSE fails to bind Tau P301L, a mutant that is present in the 3xTg-AD mouse model of AD. We further show that CSE is depleted in 3xTg-AD mice as well as in human AD brains, and that H2S prevents hyperphosphorylation of Tau by sulfhydrating its kinase, glycogen synthase kinase 3ß (GSK3ß). Finally, we demonstrate that sulfhydration is diminished in AD, while administering the H2S donor sodium GYY4137 (NaGYY) to 3xTg-AD mice ameliorates motor and cognitive deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Cistationina gamma-Liasa/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Sulfuro de Hidrógeno/farmacología , Morfolinas/farmacología , Fármacos Neuroprotectores/farmacología , Compuestos Organotiofosforados/farmacología , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Cistationina gamma-Liasa/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Mutación , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Fosforilación , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Placa Amiloide/prevención & control , Unión Proteica , Procesamiento Proteico-Postraduccional , Sulfatos/metabolismo , Proteínas tau/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627403

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfuro de Hidrógeno/farmacología , Mitocondrias Musculares/efectos de los fármacos , Morfolinas/farmacología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Compuestos Organotiofosforados/farmacología , Tionas/farmacología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Distrofina/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Sulfuro de Hidrógeno/metabolismo , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos mdx , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Compuestos Organofosforados/metabolismo , Compuestos Organotiofosforados/metabolismo , Prednisona/farmacología , Sirtuinas/genética , Sirtuinas/metabolismo , Tionas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Utrofina/deficiencia , Utrofina/genética
6.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762319

RESUMEN

The global donor kidney shortage crisis has necessitated the use of suboptimal kidneys from donors-after-cardiac-death (DCD). Using an ex vivo porcine model of DCD kidney transplantation, the present study investigates whether the addition of hydrogen sulfide donor, AP39, to University of Wisconsin (UW) solution improves graft quality. Renal pedicles of male pigs were clamped in situ for 30 min and the ureters and arteries were cannulated to mimic DCD. Next, both donor kidneys were nephrectomized and preserved by static cold storage in UW solution with or without AP39 (200 nM) at 4 °C for 4 h followed by reperfusion with stressed autologous blood for 4 h at 37 °C using ex vivo pulsatile perfusion apparatus. Urine and arterial blood samples were collected hourly during reperfusion. After 4 h of reperfusion, kidneys were collected for histopathological analysis. Compared to the UW-only group, UW+AP39 group showed significantly higher pO2 (p < 0.01) and tissue oxygenation (p < 0.05). Also, there were significant increases in urine production and blood flow rate, and reduced levels of urine protein, serum creatinine, blood urea nitrogen, plasma Na+ and K+, as well as reduced intrarenal resistance in the UW+AP39 group compared to the UW-only group. Histologically, AP39 preserved renal structure by reducing the apoptosis of renal tubular cells and immune cell infiltration. Our finding could lay the foundation for improved graft preservation and reduce the increasingly poor outcomes associated with DCD kidney transplantation.


Asunto(s)
Sulfuro de Hidrógeno , Trasplante de Riñón , Humanos , Masculino , Porcinos , Animales , Sulfuro de Hidrógeno/farmacología , Criopreservación , Mitocondrias
7.
J Cell Physiol ; 237(1): 763-773, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34346059

RESUMEN

Hydrogen sulfide (H2 S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H2 S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production has yet to be established. Glycolysis is the anaerobic process by which ATP is produced through the metabolism of glucose. Mammalian red blood cells (RBCs) extrude mitochondria and nucleus during erythropoiesis. These cells would serve as a unique model to observe the effect of H2 S on glycolysis-mediated energy production. The purpose of this study was to determine the effect of H2 S on glycolysis-mediated energy production in mitochondria-free mouse RBCs. Western blot analysis showed that the only H2 S-generating enzyme expressed in mouse RBCs is 3-mercaptopyruvate sulfurtransferase (MST). Supplement of the substrate for MST stimulated, but the inhibition of the same suppressed, the endogenous production of H2 S. Both exogenously administered H2 S salt and MST-derived endogenous H2 S stimulated glycolysis-mediated ATP production. The effect of NaHS on ATP levels was not affected by oxygenation status. On the contrary, hypoxia increased intracellular H2 S levels and MST activity in mouse RBCs. The mitochondria-targeted H2 S donor, AP39, did not affect ATP levels of mouse RBCs. NaHS at low concentrations (3-100 µM) increased ATP levels and decreased cell viability after 3 days of incubation in vitro. Higher NaHS concentrations (300-1000 µM) lowered ATP levels, but prolonged cell viability. H2 S may offer a cytoprotective effect in mammalian RBCs to maintain oxygen-independent energy production.


Asunto(s)
Sulfuro de Hidrógeno , Adenosina Trifosfato/metabolismo , Animales , Eritrocitos/metabolismo , Glucólisis , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Hipoxia , Mamíferos/metabolismo , Ratones
8.
J Inherit Metab Dis ; 44(2): 367-375, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33325042

RESUMEN

Primary mitochondrial diseases (PMD) are inherited diseases that cause dysfunctional mitochondrial oxidative phosphorylation, leading to diverse multisystem diseases and substantially impaired quality of life. PMD treatment currently comprises symptom management, with an unmet need for therapies targeting the causative mitochondrial defects. Molecules which selective target mitochondria have been proposed as potential treatment options in PMD but have met with limited success. We have previously shown in animal models that mitochondrial dysfunction caused by the disease process could be prevented and/or reversed by selective targeting of the "gasotransmitter" hydrogen sulfide (H2 S) to mitochondria using a novel compound, AP39. Therefore, in this study we investigated whether AP39 could also restore mitochondrial function in PMD models where mitochondrial dysfunction was the cause of the disease pathology using C. elegans. We characterised several PMD mutant C. elegans strains for reduced survival, movement and impaired cellular bioenergetics and treated each with AP39. In animals with widespread electron transport chain deficiency (gfm-1[ok3372]), AP39 (100 nM) restored ATP levels, but had no effect on survival or movement. However, in a complex I mutant (nuo-4[ok2533]), a Leigh syndrome orthologue, AP39 significantly reversed the decline in ATP levels, preserved mitochondrial membrane potential and increased movement and survival. For the first time, this study provides proof-of-principle evidence suggesting that selective targeting of mitochondria with H2 S could represent a novel drug discovery approach to delay, prevent and possibly reverse mitochondrial decline in PMD and related disorders.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Tionas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Caenorhabditis elegans , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/metabolismo
9.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281230

RESUMEN

The use of blood for normothermic and subnormothermic kidney preservation hinders the translation of these approaches and promising therapeutics. This study evaluates whether adding hydrogen sulfide donor AP39 to Hemopure, a blood substitute, during subnormothermic perfusion improves kidney outcomes. After 30 min of renal pedicle clamping, porcine kidneys were treated to 4 h of static cold storage (SCS-4 °C) or subnormothermic perfusion at 21 °C with Hemopure (H-21 °C), Hemopure + 200 nM AP39 (H200nM-21 °C) or Hemopure + 1 µM AP39 (H1µM-21 °C). Then, kidneys were reperfused with Hemopure at 37 °C for 4 h with metabolic support. Perfusate composition, tissue oxygenation, urinalysis and histopathology were analyzed. During preservation, the H200nM-21 °C group exhibited significantly higher urine output than the other groups and significantly higher tissue oxygenation than the H1µM-21 °C group at 1 h and 2h. During reperfusion, the H200nM-21 °C group exhibited significantly higher urine output and lower urine protein than the other groups. Additionally, the H200nM-21 °C group exhibited higher perfusate pO2 levels than the other groups and significantly lower apoptotic injury than the H-21 °C and the H1µM-21 °C groups. Thus, subnormothermic perfusion at 21 °C with Hemopure + 200 nM AP39 improves renal outcomes. Additionally, our novel blood-free model of ex vivo kidney preservation and reperfusion could be useful for studying other therapeutics.


Asunto(s)
Hemoglobinas , Riñón , Preservación de Órganos/métodos , Compuestos Organofosforados , Reperfusión/métodos , Tionas , Animales , Técnicas In Vitro , Porcinos
10.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34360581

RESUMEN

Ischemic stroke is the third leading cause of death in the world, which accounts for almost 12% of the total deaths worldwide. Despite decades of research, the available and effective pharmacotherapy is limited. Some evidence underlines the beneficial properties of hydrogen sulfide (H2S) donors, such as NaSH, in an animal model of brain ischemia and in in vitro research; however, these data are ambiguous. This study was undertaken to verify the neuroprotective activity of AP39, a slow-releasing mitochondria-targeted H2S delivery molecule. We administered AP39 for 7 days prior to ischemia onset, and the potential to induce brain tolerance to ischemia was verified. To do this, we used the rat model of 90-min middle cerebral artery occlusion (MCAO) and used LC-MS/MS, RT-PCR, LuminexTM assays, Western blot and immunofluorescent double-staining to determine the absolute H2S levels, inflammatory markers, neurotrophic factor signaling pathways and apoptosis marker in the ipsilateral frontal cortex, hippocampus and in the dorsal striatum 24 h after ischemia onset. AP39 (50 nmol/kg) reduced the infarct volume, neurological deficit and reduced the microglia marker (Iba1) expression. AP39 also exerted prominent anti-inflammatory activity in reducing the release of Il-1ß, Il-6 and TNFα in brain areas particularly affected by ischemia. Furthermore, AP39 enhanced the pro-survival pathways of neurotrophic factors BDNF-TrkB and NGF-TrkA and reduced the proapoptotic proNGF-p75NTR-sortilin pathway activity. These changes corresponded with reduced levels of cleaved caspase 3. Altogether, AP39 treatment induced adaptative changes within the brain and, by that, developed brain tolerance to ischemia.


Asunto(s)
Isquemia Encefálica/prevención & control , Sulfuro de Hidrógeno/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Mitocondrias/metabolismo , Compuestos Organofosforados/farmacología , Sustancias Protectoras/farmacología , Tionas/farmacología , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Sulfuro de Hidrógeno/análisis , Masculino , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/administración & dosificación , Sustancias Protectoras/administración & dosificación , Ratas , Ratas Sprague-Dawley , Tionas/administración & dosificación
11.
Am J Transplant ; 19(11): 3139-3148, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31338943

RESUMEN

Heart transplant has been accepted as the standard treatment for end-stage heart failure. Because of its susceptibility to ischemia-reperfusion injury, the heart can be preserved for only 4 to 6 hours in cold static preservation solutions. Prolonged ischemia time is adversely associated with primary graft function and long-term survival. New strategies to preserve donor hearts are urgently needed. We demonstrate that AP39, a mitochondria-targeting hydrogen sulfide donor, significantly increases cardiomyocyte viability and reduces cell apoptosis/death after cold hypoxia/reoxygenation in vitro. It also decreases gene expression of proinflammatory cytokines and preserves mitochondria function. Using an in vivo murine heart transplant model, we show that preserving donor hearts with AP39-supplemented University of Wisconsin solution (n = 7) significantly protects heart graft function, measured by quantitative ultrasound scan, against prolonged cold ischemia-reperfusion injury (24 hours at 4°C), along with reducing tissue injury and fibrosis. Our study demonstrates that supplementing preservation solution with AP39 protects cardiac grafts from prolonged ischemia, highlighting its therapeutic potential in preventing ischemia-reperfusion injury in heart transplant.


Asunto(s)
Trasplante de Corazón/métodos , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Soluciones Preservantes de Órganos/administración & dosificación , Preservación de Órganos/métodos , Compuestos Organofosforados/farmacología , Daño por Reperfusión/prevención & control , Tionas/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Donantes de Tejidos/provisión & distribución
12.
Molecules ; 24(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694287

RESUMEN

Alliums and allied plant species are rich sources of sulfur compounds that have effects on vascular homeostasis and the control of metabolic systems linked to nutrient metabolism in mammals. In view of the multiple biological effects ascribed to these sulfur molecules, researchers are now using these compounds as inspiration for the synthesis and development of novel sulfur-based therapeutics. This research has led to the chemical synthesis and biological assessment of a diverse array of sulfur compounds representative of derivatives of S-alkenyl-l-cysteine sulfoxides, thiosulfinates, ajoene molecules, sulfides, and S-allylcysteine. Many of these synthetic derivatives have potent antimicrobial and anticancer properties when tested in preclinical models of disease. Therefore, the current review provides an overview of advances in the development and biological assessment of synthetic analogs of allium-derived sulfur compounds.


Asunto(s)
Allium/química , Compuestos de Azufre/química , Compuestos de Azufre/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Humanos
13.
Nitric Oxide ; 81: 57-66, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30393129

RESUMEN

Renal transplantation is the preferred treatment for end-stage renal disease. Currently, there is a large gap between the supply and demand for transplantable kidneys. The use of sub-optimal grafts obtained via donation after cardiac death (DCD) is on the rise. While static cold storage (SCS) in University of Wisconsin (UW) solution on ice (4°C) is the clinical standard of care for renal graft preservation, cold storage has been associated with negative graft outcomes. The alternative, normothermic machine perfusion, involves mechanical perfusion of the organ at physiological or normothermic temperature (37°C) and this technique is expensive, complicated and globally inaccessible. As such, simpler alternatives are of interest. Preliminary results revealed that UW solution is more protective at 21°C than 37°C and subnormothermic preservation is of interest because it may facilitate the use of existing solutions while preventing cold injury. We have previously shown that SCS in UW solution supplemented with mitochondria-targeted H2S donor AP39 improves renal graft outcomes. As such, it was hypothesized subnormothermic preservation at 21°C with AP39 will also improve renal outcomes. Using an in vitro model of hypoxia and reoxygenation, we found that treating porcine tubular epithelial cells with UW+5 µM AP39 during 18 h hypoxia at 21°C significantly increased renal tubular epithelial cell viability after 24 h of reoxygenation at 37°C compared to UW alone. Also, AP39-supplemented UW solution was significantly more cytoprotective during hypoxia at 21°C than hypoxia at 37°C, regardless of AP39 concentration. Using an ex vivo DCD organ preservation model, we found that DCD porcine kidneys stored for 24 h in UW+200 nM AP39 at 21°C showed significantly lower tissue necrosis than DCD porcine kidneys preserved using SCS in UW solution, the clinical standard of care. Overall, our findings suggest that exogenous H2S supplementation improves the viability of the gold standard organ preservation solution, UW solution, for subnormothermic preservation at 21°C.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Riñón/citología , Soluciones Preservantes de Órganos/farmacología , Preservación de Órganos/métodos , Daño por Reperfusión/prevención & control , Adenosina/farmacología , Alopurinol/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citoprotección , Células Epiteliales/efectos de los fármacos , Glutatión/farmacología , Insulina/farmacología , Trasplante de Riñón , Compuestos Organofosforados/farmacología , Perfusión , Rafinosa/farmacología , Porcinos , Temperatura , Tionas/farmacología
14.
Nitric Oxide ; 76: 16-28, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522906

RESUMEN

OBJECTIVES: To assess the effects of slow-releasing H2S donor GYY4137 on post-obstructive renal function and injury following unilateral ureteral obstruction (UUO) by using the UUO and reimplantation (UUO-R) model in rats and to elucidate potential mechanisms by using an in vitro model of epithelial-mesenchymal transition (EMT). METHODS: Male Lewis rats underwent UUO at the left ureterovesical junction. From post-operative day (POD) 1-13, rats received daily intraperitoneal (IP) injection of phosphate buffered saline (PBS, 1 mL) or GYY4137 (200 µmol/kg/day in 1 mL PBS, IP). On POD 14, the ureter was reimplanted back into the bladder, followed by a right nephrectomy. Urine and serum samples were collected to monitor renal function. On POD 30, the left kidney was removed and tissue sections were stained with H&E, TUNEL, CD68, CD206, myeloperoxidase, and Masson's trichrome to determine cortical thickness, apoptosis, inflammation, and fibrosis. In our in vitro model of EMT, NRK52E cells were treated with 10 ng/mL TGF-ß1, 10 µM GYY4137 and/or 50 µM GYY4137. Western blot analysis was performed to determine the expression of E-cadherin, vimentin, Smad7 and TGF-ß1 receptor II (TßRII). RESULTS: GYY4137 led to a moderate decrease in post-obstructive serum creatinine, cystatin C and FENa. We also observed a trend towards a decrease in post-obstructive proteinuria following GYY4137 treatment. Histologically, we observed a significant decrease in apoptosis, inflammation, and fibrosis. Furthermore, our in vitro studies demonstrate that in the presence of TGF-ß1, GYY4137 significantly decreases vimentin and TßRII and significantly increases E-cadherin and Smad7. CONCLUSIONS: H2S may help to accelerate the recovery of renal function post-obstruction and attenuates renal injury associated with UUO. It is possible that H2S mitigates fibrosis by regulating the TGF-ß1-mediated EMT pathway. Taken together, our data suggest that H2S may be a potential novel therapy for improving renal function and limiting renal injury associated with obstructive uropathy.


Asunto(s)
Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Riñón/efectos de los fármacos , Riñón/lesiones , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacología , Obstrucción Ureteral/complicaciones , Animales , Riñón/patología , Masculino , Ratas , Ratas Endogámicas Lew , Obstrucción Ureteral/patología
15.
J Pharmacol Exp Ther ; 356(1): 53-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26493746

RESUMEN

Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation.


Asunto(s)
Calcio/metabolismo , Sulfuro de Hidrógeno/farmacología , Arterias Mesentéricas/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Animales , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Sulfuro de Hidrógeno/metabolismo , Técnicas In Vitro , Canales de Potasio KCNQ/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Cadenas Ligeras de Miosina/efectos de los fármacos , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/antagonistas & inhibidores , Fosforilación , Bloqueadores de los Canales de Potasio/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Vasodilatación/efectos de los fármacos
16.
J Pharmacol Exp Ther ; 358(3): 431-40, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27342567

RESUMEN

Hydrogen sulfide (H2S) is a signaling molecule with protective effects in the cardiovascular system. To harness the therapeutic potential of H2S, a number of donors have been developed. The present study compares the cardioprotective actions of representative H2S donors from different classes and studies their mechanisms of action in myocardial injury in vitro and in vivo. Exposure of cardiomyocytes to H2O2 led to significant cytotoxicity, which was inhibited by sodium sulfide (Na2S), thiovaline (TV), GYY4137 [morpholin-4-ium 4 methoxyphenyl(morpholino) phosphinodithioate], and AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl) triphenylphospho-nium bromide]. Inhibition of nitric oxide (NO) synthesis prevented the cytoprotective effects of Na2S and TV, but not GYY4137 and AP39, against H2O2-induced cardiomyocyte injury. Mice subjected to left anterior descending coronary ligation were protected from ischemia-reperfusion injury by the H2S donors tested. Inhibition of nitric oxide synthase (NOS) in vivo blocked only the beneficial effect of Na2S. Moreover, Na2S, but not AP39, administration enhanced the phosphorylation of endothelial NOS and vasodilator-associated phosphoprotein. Both Na2S and AP39 reduced infarct size in mice lacking cyclophilin-D (CypD), a modulator of the mitochondrial permeability transition pore (PTP). Nevertheless, only AP39 displayed a direct effect on mitochondria by increasing the mitochondrial Ca(2+) retention capacity, which is evidence of decreased propensity to undergo permeability transition. We conclude that although all the H2S donors we tested limited infarct size, the pathways involved were not conserved. Na2S had no direct effects on PTP opening, and its action was nitric oxide dependent. In contrast, the cardioprotection exhibited by AP39 could result from a direct inhibitory effect on PTP acting at a site different than CypD.


Asunto(s)
Cardiotónicos/farmacología , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Animales , Cardiotónicos/uso terapéutico , Línea Celular , Humanos , Masculino , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
17.
J Urol ; 196(6): 1778-1787, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27177428

RESUMEN

PURPOSE: Chronic obstructive uropathy can cause irreversible kidney injury, atrophy and inflammation, which can ultimately lead to fibrosis. Epithelial-mesenchymal transition is a key trigger of fibrosis that is caused by up-regulation of TGF-ß1 (transforming growth factor-ß1) and ANGII (angiotensin II). H2S is an endogenously produced gasotransmitter with cytoprotective properties. We sought to elucidate the effects of the slow-releasing H2S donor GYY4137 on chronic ureteral obstruction and evaluate the potential mechanisms. MATERIALS AND METHODS: Following unilateral ureteral obstruction male Lewis rats were given daily intraperitoneal administration of phosphate buffered saline vehicle (obstruction group) or phosphate buffered saline plus 200 µmol/kg GYY4137 (obstruction plus GYY4137 group) for 30 days. Urine and serum samples were collected to determine physiological parameters of renal function and injury. Kidneys were removed on postoperative day 30 to evaluate histopathology and protein expression. Epithelial-mesenchymal transition in LLC-PK1 pig kidney epithelial cells was induced with TGF-ß1 and treated with GYY4137 to evaluate potential mechanisms via in vitro scratch wound assays. RESULTS: H2S treatment decreased serum creatinine and the urine protein-to-creatinine excretion ratio after unilateral ureteral obstruction. In addition, H2S mitigated cortical loss, inflammatory damage and tubulointerstitial fibrosis. Tissues showed decreased expression of epithelial-mesenchymal transition markers upon H2S treatment. Epithelial-mesenchymal transition progression in LLC-PK1 was alleviated upon in vitro administration of GYY4137. CONCLUSIONS: To our knowledge our findings demonstrate for the first time the protective effects of H2S in chronic obstructive uropathy. This may represent a potential therapeutic solution to ameliorate renal damage and improve the clinical outcomes of urinary obstruction.


Asunto(s)
Sulfuro de Hidrógeno/uso terapéutico , Enfermedades Renales/etiología , Enfermedades Renales/prevención & control , Morfolinas/uso terapéutico , Compuestos Organotiofosforados/uso terapéutico , Obstrucción Ureteral/complicaciones , Animales , Enfermedad Crónica , Masculino , Ratas , Ratas Endogámicas Lew , Porcinos
18.
Pharmacol Res ; 111: 442-451, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27378570

RESUMEN

Exogenous hydrogen sulfide (H2S) protects against myocardial ischemia/reperfusion injury but the mechanism of action is unclear. The present study investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial infarction given specifically at reperfusion and the signalling pathway involved. Thiobutabarbital-anesthetised rats were subjected to 30min of left coronary artery occlusion and 2h reperfusion. Infarct size was assessed by tetrazolium staining. In the first study, animals randomly received either no treatment or GYY4137 (26.6, 133 or 266µmolkg(-1)) by intravenous injection 10min before reperfusion. In a second series, involvement of PI3K and NO signalling were interrogated by concomitant administration of LY294002 or L-NAME respectively and the effects on the phosphorylation of Akt, eNOS, GSK-3ß and ERK1/2 during early reperfusion were assessed by immunoblotting. GYY4137 266µmolkg(-1) significantly limited infarct size by 47% compared to control hearts (P<0.01). In GYY4137-treated hearts, phosphorylation of Akt, eNOS and GSK-3ß was increased 2.8, 2.2 and 2.2 fold respectively at early reperfusion. Co-administration of L-NAME and GYY4137 attenuated the cardioprotection afforded by GYY4137, associated with attenuated phosphorylation of eNOS. LY294002 totally abrogated the infarct-limiting effect of GYY4137 and inhibited Akt, eNOS and GSK-3ß phosphorylation. These data are the first to demonstrate that GYY4137 protects the heart against lethal reperfusion injury through activation of PI3K/Akt signalling, with partial dependency on NO signalling and inhibition of GSK-3ß during early reperfusion. H2S-based therapeutic approaches may have value as adjuncts to reperfusion in the treatment of acute myocardial infarction.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Morfolinas/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Compuestos Organotiofosforados/farmacología , Sustancias Protectoras/farmacología , Animales , Citoprotección , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hemodinámica/efectos de los fármacos , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
19.
Pharmacol Res ; 113(Pt A): 186-198, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27565382

RESUMEN

The development of diabetic vascular complications is initiated, at least in part, by mitochondrial reactive oxygen species (ROS) production in endothelial cells. Hyperglycemia induces superoxide production in the mitochondria and initiates changes in the mitochondrial membrane potential that leads to mitochondrial dysfunction. Hydrogen sulfide (H2S) supplementation has been shown to reduce the mitochondrial oxidant production and shows efficacy against diabetic vascular damage in vivo. However, the half-life of H2S is very short and it is not specific for the mitochondria. We have therefore evaluated two novel mitochondria-targeted anethole dithiolethione and hydroxythiobenzamide H2S donors (AP39 and AP123 respectively) at preventing hyperglycemia-induced oxidative stress and metabolic changes in microvascular endothelial cells in vitro. Hyperglycemia (HG) induced significant increase in the activity of the citric acid cycle and led to elevated mitochondrial membrane potential. Mitochondrial oxidant production was increased and the mitochondrial electron transport decreased in hyperglycemic cells. AP39 and AP123 (30-300nM) decreased HG-induced hyperpolarisation of the mitochondrial membrane and inhibited the mitochondrial oxidant production. Both H2S donors (30-300nM) increased the electron transport at respiratory complex III and improved the cellular metabolism. Targeting H2S to mitochondria retained the cytoprotective effect of H2S against glucose-induced damage in endothelial cells suggesting that the molecular target of H2S action is within the mitochondria. Mitochondrial targeting of H2S also induced >1000-fold increase in the potency of H2S against hyperglycemia-induced injury. The high potency and long-lasting effect elicited by these H2S donors strongly suggests that these compounds could be useful against diabetic vascular complications.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Hiperglucemia/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/farmacología , Sustancias Protectoras/farmacología , Tionas/farmacología , Animales , Línea Celular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Transporte de Electrón/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Glucosa/metabolismo , Hiperglucemia/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Exp Eye Res ; 134: 73-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25845295

RESUMEN

In the present study, we investigate the inhibitory effect of novel H2S donors, AP67 and AP72 on isolated bovine posterior ciliary arteries (PCAs) under conditions of tone induced by an adrenoceptor agonist. Furthermore, we examined the possible mechanisms underlying the AP67- and AP72-induced relaxations. Isolated bovine PCA were set up for measurement of isometric tension in organ baths containing oxygenated Krebs solution. The relaxant action of H2S donors was studied on phenylephrine-induced tone in the absence or presence of enzyme inhibitors for the following pathways: cyclooxygenase (COX); H2S; nitric oxide and the ATP-sensitive K(+) (KATP) channel. The H2S donors, NaSH (1 nM - 10 µM), AP67 (1 nM - 10 µM) and AP72 (10 nM - 1 µM) elicited a concentration-dependent relaxation of phenylephrine-induced tone in isolated bovine PCA. While the COX inhibitor, flurbiprofen (3 µM) blocked significantly (p < 0.05) the inhibitory response elicited by AP67, it had no effect on relaxations induced by NaSH and AP72. Both aminooxyacetic acid (30 µM) and propargylglycine (1 mM), enzyme inhibitors of H2S biosynthesis caused significant (p < 0.05) rightward shifts in the concentration-response curve to AP67 and AP72. Furthermore, the KATP channel antagonist, glibenclamide (300 µM) and the NO synthase inhibitor, l-NAME (100 µM) significantly attenuated (p < 0.05) the relaxation effect induced by AP67 and AP72 on PCA. We conclude that H2S donors can relax pre-contracted isolated bovine PCA, an effect dependent on endogenous production of H2S. The inhibitory action of only AP67 on pre-contracted PCA may involve the production of inhibitory endogenous prostanoids. Furthermore, the observed inhibitory action of H2S donors on PCA may depend on the endogenous biosynthesis of NO and by an action of KATP channels.


Asunto(s)
Arterias Ciliares/fisiología , Sulfuro de Hidrógeno/metabolismo , Músculo Liso Vascular/fisiología , Compuestos Organofosforados/farmacología , Piperidinas/farmacología , Pirrolidinas/farmacología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Bovinos , Arterias Ciliares/efectos de los fármacos , Cistationina betasintasa/antagonistas & inhibidores , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Contracción Isométrica/fisiología , Canales KATP/metabolismo , Relajación Muscular/efectos de los fármacos , Óxido Nítrico/metabolismo , Fenilefrina/farmacología , Diseño de Software , Vasoconstrictores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA