Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Diabetologia ; 61(10): 2215-2224, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30046852

RESUMEN

AIMS/HYPOTHESIS: Islet amyloid deposits contribute to beta cell dysfunction and death in most individuals with type 2 diabetes but non-invasive methods to determine the presence of these pathological protein aggregates are currently not available. Therefore, we examined whether florbetapir, a radiopharmaceutical agent used for detection of amyloid-ß deposits in the brain, also allows identification of islet amyloid in the pancreas. METHODS: Saturation binding assays were used to determine the affinity of florbetapir for human islet amyloid polypeptide (hIAPP) aggregates in vitro. Islet amyloid-prone transgenic mice that express hIAPP in their beta cells and amyloid-free non-transgenic control mice were used to examine the ability of florbetapir to detect islet amyloid deposits in vitro, in vivo and ex vivo. Mice or mouse pancreases were subjected to autoradiographic, histochemical and/or positron emission tomography (PET) analyses to assess the utility of florbetapir in identifying islet amyloid. RESULTS: In vitro, florbetapir bound synthetic hIAPP fibrils with a dissociation constant of 7.9 nmol/l. Additionally, florbetapir bound preferentially to amyloid-containing hIAPP transgenic vs amyloid-free non-transgenic mouse pancreas sections in vitro, as determined by autoradiography (16,475 ± 5581 vs 5762 ± 575 density/unit area, p < 0.05). In hIAPP transgenic and non-transgenic mice fed a high-fat diet for 1 year, intravenous administration of florbetapir followed by PET scanning showed that the florbetapir signal was significantly higher in amyloid-laden hIAPP transgenic vs amyloid-free non-transgenic pancreases in vivo during the first 5 min of the scan (36.83 ± 2.22 vs 29.34 ± 2.03 standardised uptake value × min, p < 0.05). Following PET, pancreases were excised and florbetapir uptake was determined ex vivo by γ counting. Pancreatic uptake of florbetapir was significantly correlated with the degree of islet amyloid deposition, the latter assessed by histochemistry (r = 0.74, p < 0.001). CONCLUSIONS/INTERPRETATION: Florbetapir binds to islet amyloid deposits in a specific and quantitative manner. In the future, florbetapir may be useful as a non-invasive tool to identify islet amyloid deposits in humans.


Asunto(s)
Amiloide/química , Compuestos de Anilina/farmacología , Glicoles de Etileno/farmacología , Islotes Pancreáticos/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , Composición Corporal , Calorimetría Indirecta , Radioisótopos de Flúor/farmacología , Regulación de la Expresión Génica , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Hipotálamo/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Transducción de Señal
2.
Diabetologia ; 60(4): 701-708, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27933334

RESUMEN

AIM/HYPOTHESIS: Neprilysin, a widely expressed peptidase, is upregulated in metabolically altered states such as obesity and type 2 diabetes. Like dipeptidyl peptidase-4 (DPP-4), neprilysin can degrade and inactivate the insulinotropic peptide glucagon-like peptide-1 (GLP-1). Thus, we investigated whether neprilysin deficiency enhances active GLP-1 levels and improves glycaemia in a mouse model of high fat feeding. METHODS: Nep +/+ and Nep -/- mice were fed a 60% fat diet for 16 weeks, after which active GLP-1 and DPP-4 activity levels were measured, as were glucose, insulin and C-peptide levels during an OGTT. Insulin sensitivity was assessed using an insulin tolerance test. RESULTS: High-fat-fed Nep -/- mice exhibited elevated active GLP-1 levels (5.8 ± 1.1 vs 3.5 ± 0.8 pmol/l, p < 0.05) in association with improved glucose tolerance, insulin sensitivity and beta cell function compared with high-fat-fed Nep +/+ mice. In addition, plasma DPP-4 activity was lower in high-fat-fed Nep -/- mice (7.4 ± 1.0 vs 10.7 ± 1.3 nmol ml-1 min-1, p < 0.05). No difference in insulin:C-peptide ratio was observed between Nep -/- and Nep +/+ mice, suggesting that improved glycaemia does not result from changes in insulin clearance. CONCLUSIONS/INTERPRETATION: Under conditions of increased dietary fat, an improved glycaemic status in neprilysin-deficient mice is associated with elevated active GLP-1 levels, reduced plasma DPP-4 activity and improved beta cell function. Thus, neprilysin inhibition may be a novel treatment strategy for type 2 diabetes.


Asunto(s)
Glucemia/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Neprilisina/deficiencia , Neprilisina/metabolismo , Análisis de Varianza , Animales , Péptido C/metabolismo , Glucagón/metabolismo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Masculino , Ratones , Ratones Mutantes
3.
J Diabetes Res ; 2018: 6106051, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29854823

RESUMEN

Loss of first-phase insulin release is an early pathogenic feature of type 2 diabetes (T2D). Various mouse models exist to study T2D; however, few recapitulate the early ß-cell defects seen in humans. We sought to develop a nongenetic mouse model of T2D that exhibits reduced first-phase insulin secretion without a significant deficit in pancreatic insulin content. C57BL/6J mice were fed 10% or 60% fat diet for three weeks, followed by three consecutive, once-daily intraperitoneal injections of the ß-cell toxin streptozotocin (STZ; 30, 50, or 75 mg/kg) or vehicle. Four weeks after injections, the first-phase insulin response to glucose was reduced in mice when high-fat diet was combined with 30, 50, or 75 mg/kg STZ. This was accompanied by diminished second-phase insulin release and elevated fed glucose levels. Further, body weight gain, pancreatic insulin content, and ß-cell area were decreased in high fat-fed mice treated with 50 and 75 mg/kg STZ, but not 30 mg/kg STZ. Low fat-fed mice were relatively resistant to STZ, with the exception of reduced pancreatic insulin content and ß-cell area. Together, these data demonstrate that in high fat-fed mice, three once-daily injections of 30 mg/kg STZ produces a model of ß-cell failure without insulin deficiency that may be useful in studies investigating the etiology and progression of human T2D.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Ratones , Páncreas/metabolismo
4.
Endocrinology ; 158(2): 293-303, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27870582

RESUMEN

Islet endothelial cells produce paracrine factors that support ß-cell function and growth. Endothelial dysfunction underlies diabetic microvascular complications; thus, we hypothesized that in diabetes, islet endothelial cells become dysfunctional, which may contribute to ß-cell secretory dysfunction. Islets/islet endothelial cells were isolated from diabetic B6.BKS(D)-Leprdb/J male (db/db) mice, treated with or without the glucose-lowering agent phlorizin, or from C57BL/6J mice fed a high-fat diet for 18 weeks and appropriate controls. Messenger RNA (mRNA) and/or the protein levels of the cell adhesion molecule E-selectin (Sele), proinflammatory cytokine interleukin-6 (Il6), vasoconstrictor endothelin-1 (Edn1), and endothelial nitric oxide synthase (Nos3; Nos3) were evaluated, along with advanced glycation end product immunoreactivity. Furthermore, an islet endothelial cell line (MS-1) was exposed to diabetic factors (glucose, palmitate, insulin, and tumor necrosis factor-α) for six days. Conditioned media were collected from these cells, incubated with isolated islets, and glucose-stimulated insulin secretion and insulin content were assessed. Islet endothelial cells from db/db mice exhibited increased Sele, Il6, and Edn1 mRNA levels, decreased Nos3 protein, and accumulation of advanced glycation end products. Phlorizin treatment significantly increased Nos3 protein levels but did not alter expression of the other markers. High-fat feeding in C57BL/6J mice resulted in increased islet Sele, Il6, and Edn1 but no change in Nos3. Exposure of islets to conditioned media from MS-1 cells cultured in diabetic conditions resulted in a 50% decrease in glucose-stimulated insulin secretion and 30% decrease in insulin content. These findings demonstrate that, in diabetes, islet endothelial cells show evidence of a dysfunctional phenotype, which may contribute to loss of ß-cell function.


Asunto(s)
Endotelio/fisiopatología , Insulina/metabolismo , Islotes Pancreáticos/fisiopatología , Animales , Biomarcadores/metabolismo , Dieta Alta en Grasa/efectos adversos , Células Endoteliales/metabolismo , Glucosa , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Florizina
5.
J Endocrinol ; 233(1): 53-64, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28138002

RESUMEN

Mouse models are widely used for elucidating mechanisms underlying type 2 diabetes. Genetic background profoundly affects metabolic phenotype; therefore, selecting the appropriate model is critical. Although variability in metabolic responses between mouse strains is now well recognized, it also occurs within C57BL/6 mice, of which several substrains exist. This within-strain variability is poorly understood and could emanate from genetic and/or environmental differences. To better define the within-strain variability, we performed the first comprehensive comparison of insulin secretion from C57BL/6 substrains 6J, 6JWehi, 6NJ, 6NHsd, 6NTac and 6NCrl. In vitro, glucose-stimulated insulin secretion correlated with Nnt mutation status, wherein responses were uniformly lower in islets from C57BL/6J vs C57BL/6N mice. In contrast, in vivo insulin responses after 18 weeks of low fat feeding showed no differences among any of the six substrains. When challenged with a high-fat diet for 18 weeks, C57BL/6J substrains responded with a similar increase in insulin release. However, variability was evident among C57BL/6N substrains. Strikingly, 6NJ mice showed no increase in insulin release after high fat feeding, contributing to the ensuing hyperglycemia. The variability in insulin responses among high-fat-fed C57BL/6N mice could not be explained by differences in insulin sensitivity, body weight, food intake or beta-cell area. Rather, as yet unidentified genetic and/or environmental factor(s) are likely contributors. Together, our findings emphasize that caution should be exercised in extrapolating data from in vitro studies to the in vivo situation and inform on selecting the appropriate C57BL/6 substrain for metabolic studies.


Asunto(s)
Dieta Alta en Grasa , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Animales , Peso Corporal/fisiología , Ingestión de Alimentos/fisiología , Resistencia a la Insulina/fisiología , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA