Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 321: 115840, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35994960

RESUMEN

The inclusion of warm-season grasses, such as switchgrass (Panicum virgatum) and eastern gamagrass (EG) (Tripsacum dactyloides), in vegetated buffer strips has been shown to mitigate herbicide contamination in runoff and increase herbicide degradation in soil. The mode of action by which buffer strip rhizospheres enhance herbicide degradation remains unclear, but microorganisms and phytochemicals are believed to facilitate degradation processes. The objectives of this study were to: 1) screen root extracts from seven switchgrass cultivars for the ability to degrade the herbicide atrazine (ATZ) in solution; 2) determine sorption coefficients (Kd) of the ATZ-degrading phytochemical 2-ß-D-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one (DBG) to soil and Ca-montmorillonite, and investigate if DBG or ATZ sorption alters degradation processes; and 3) quantify ATZ degradation rates and soil microbial response to ATZ application in mesocosms containing soil and select warm-season grasses. Phytochemicals extracted from the roots of switchgrass cultivars degraded 44-85% of ATZ in 16-h laboratory assays, demonstrating that some switchgrass cultivars could rapidly degrade ATZ under laboratory conditions. However, attempts to isolate ATZ-degrading phytochemicals from plant roots were unsuccessful. Sorption studies revealed that DBG was strongly sorbed to soil (Kd = 87.2 L kg-1) and Ca-montmorillonite (Kd = 31.7 L kg-1), and DBG driven hydrolysis of ATZ was entirely inhibited when either ATZ or DBG were sorbed to Ca-montmorillonite. Atrazine degradation rates in mesocosm soils were rapid (t0.5 = 8.2-11.2 d), but not significantly different between soils collected from the two switchgrass cultivar mesocosms, the eastern gamagrass cultivar mesocosm, and the unvegetated mesocosm (control). Significant changes in three phospholipid fatty acid biomarkers were observed among the treatments. These changes indicated that different ATZ-degrading microbial consortia resulted in equivalent ATZ degradation rates between treatments. Results demonstrated that soil microbial response was the dominant mechanism controlling ATZ degradation in the soil studied, rather than root phytochemicals.


Asunto(s)
Atrazina , Herbicidas , Panicum , Contaminantes del Suelo , Contaminantes Químicos del Agua , Agricultura , Atrazina/química , Bentonita , Biodegradación Ambiental , Herbicidas/química , Panicum/metabolismo , Fitoquímicos , Suelo/química , Contaminantes del Suelo/análisis
2.
Sci Adv ; 6(7): eaay1641, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32195355

RESUMEN

We report a mountain-scale record of erosion rates in the central Patagonian Andes from >10 million years (Ma) ago to present, which covers the transition from a fluvial to alpine glaciated landscape. Apatite (U-Th)/He ages of 72 granitic cobbles from alpine glacial deposits show slow erosion before ~6 Ma ago, followed by a two- to threefold increase in the spatially averaged erosion rate of the source region after the onset of alpine glaciations and a 15-fold increase in the top 25% of the distribution. This transition is followed by a pronounced decrease in erosion rates over the past ~3 Ma. We ascribe the pulse of fast erosion to local deepening and widening of valleys, which are characteristic features of alpine glaciated landscapes. The subsequent decline in local erosion rates may represent a return toward a balance between rock uplift and erosion.

3.
Sci Total Environ ; 697: 133931, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31479907

RESUMEN

Streams in the Salt River Basin (SRB) of northeastern Missouri, USA, have been chronically contaminated by atrazine and metabolites, with peak annual transport occurring from spring to early summer. Since 2005, increased fall-applied simazine has introduced a second chloro-triazine herbicide that degrades to deisopropylatrazine (DIA), creating the need for a method to partition DIA between its two parent sources - i.e., DIA derived from atrazine (DIAATR) and that from simazine (DIASIM). Distinguishing DIA parent sources would extend current understanding of chloro-triazine transport, leading to more accurate risk assessments and improved watershed-scale load estimates. The objectives of this study were to evaluate proposed methods for DIA partitioning, and to apply the most effective method to estimate DIAATR and DIASIM concentrations and loads. Three DIA partition methods were developed and statistically evaluated: 1) edge-of-field (EOF) based on DIA and deethylatrazine (DEA) concentrations in runoff from atrazine treated fields; 2) DIA:DEA concentration ratios (D2R) in runoff from atrazine treated fields; and 3) concentration ratios of simazine:atrazine (SAR) in streams. Stream samples were collected year-round at 7 SRB stream sites from 2005 to 2010 and daily, quarterly, and annual concentrations and loads of atrazine, DEA, DIA, and simazine computed. The SAR method was superior to EOF and D2R in its ability to estimate concentrations and loads of DIASIM and DIAATR that were more accurate and highly correlated to observed transport of simazine, atrazine, and DIA. The SAR method results demonstrated the differences in DIASIM and DIAATR transport timing, with peak DIASIM transport occurring from mid-Nov to Apr and peak DIAATR transport from May to Jun. Dual season triazine applications within a watershed substantially increased the period of high chloro-triazine concentrations in streams from ~3 to ~8 months/yr, potentially increasing the risk of toxicity to aquatic ecosystems.

4.
J Agric Food Chem ; 64(24): 4858-65, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27215133

RESUMEN

The role of benzoxazinones (Bx, 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one) in triazine resistance in plants has been studied for over half a century. In this research, fundamental parameters of the reaction between DIBOA-Glc (2-ß-d-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one) and atrazine (ATR, 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine) were examined. Through a series of experiments employing a variety of chromatographic and spectroscopic techniques, the DIBOA-Glc/ATR reaction was characterized in terms of reactant and product kinetics, stoichiometry, identification of a reaction intermediate, and reaction products formed. Results of these experiments demonstrated that the reaction mechanism proceeds via nucleophilic attack of the hydroxamic acid moiety of DIBOA-Glc at the C-2 position of the triazine ring to form hydroxyatrazine (HA, 2-hydroxy-4-ethylamino-6-isopropylamino-s-triazine), with associated degradation of DIBOA-Glc. Degradation of reactants followed first-order kinetics with a noncatalytic role of DIBOA-Glc. A reaction intermediate was identified as a DIBOA-Glc-HA conjugate, indicating a 1:1 DIBOA-Glc:ATR stoichiometry. Reaction products included HA and Cl(-), but definitive identification of DIBOA-Glc reaction product(s) was not attained. With these reaction parameters elucidated, DIBOA-Glc can be evaluated in terms of its potential for a myriad of applications, including its use to address the problem of widespread ATR contamination of soil and water resources.


Asunto(s)
Benzoxazinas/química , Herbicidas/química , Triazinas/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA