Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Comput Med Imaging Graph ; 109: 102289, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633032

RESUMEN

Aortic stenosis (AS) is the most prevalent heart valve disease in western countries that poses a significant public health challenge due to the lack of a medical treatment to prevent valve calcification. Given the aging population demographic, the prevalence of AS is projected to rise, resulting in a progressively significant healthcare and economic burden. While surgical aortic valve replacement (SAVR) has been the gold standard approach, the less invasive transcatheter aortic valve replacement (TAVR) is poised to become the dominant method for high- and medium-risk interventions. Computational simulations using patient-specific models, have opened new research avenues for optimizing emerging devices and predicting clinical outcomes. The traditional techniques of generating digital replicas of patients' aortic root, native valve, and calcification are time-consuming and labor-intensive processes requiring specialized tools and expertise in anatomy. Alternatively, deep learning models, such as the U-Net architecture, have emerged as reliable and fully automated methods for medical image segmentation. Two-dimensional U-Nets have been shown to produce comparable or more accurate results than trained clinicians' manual segmentation while significantly reducing computational costs. In this study, we have developed a fully automatic AI tool capable of reconstructing the digital twin geometry and analyzing the calcification distribution on the aortic valve. The developed automatic segmentation package enables the modeling of patient-specific anatomies, which can then be used to simulate virtual interventional procedures, optimize emerging prosthetic devices, and predict clinical outcomes.


Asunto(s)
Estenosis de la Válvula Aórtica , Aprendizaje Profundo , Implantación de Prótesis de Válvulas Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Anciano , Resultado del Tratamiento , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Implantación de Prótesis de Válvulas Cardíacas/métodos , Factores de Riesgo
2.
Front Cardiovasc Med ; 10: 1130152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082454

RESUMEN

Aortic stenosis (AS) is the most common valvular heart disease in the western world, particularly worrisome with an ever-aging population wherein postoperative outcome for aortic valve replacement is strongly related to the timing of surgery in the natural course of disease. Yet, guidelines for therapy planning overlook insightful, quantified measures from medical imaging to educate clinical decisions. Herein, we leverage statistical shape analysis (SSA) techniques combined with customized machine learning methods to extract latent information from segmented left ventricle (LV) shapes. This enabled us to predict left ventricular mass index (LVMI) regression a year after transcatheter aortic valve replacement (TAVR). LVMI regression is an expected phenomena in patients undergone aortic valve replacement reported to be tightly correlated with survival one and five year after the intervention. In brief, LV geometries were extracted from medical images of a cohort of AS patients using deep learning tools, and then analyzed to create a set of statistical shape models (SSMs). Then, the supervised shape features were extracted to feed a support vector regression (SVR) model to predict the LVMI regression. The average accuracy of the predictions was validated against clinical measurements calculating root mean square error and R 2 score which yielded the satisfactory values of 0.28 and 0.67, respectively, on test data. Our work reveals the promising capability of advanced mathematical and bioinformatics approaches such as SSA and machine learning to improve medical output prediction and treatment planning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA