Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ecology ; 90(6): 1470-7, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19569361

RESUMEN

Food webs depict who eats whom in communities. Ecologists have examined statistical metrics and other properties of food webs, but mainly due to the uneven quality of the data, the results have proved controversial. The qualitative data on which those efforts rested treat trophic interactions as present or absent and disregard potentially huge variation in their magnitude, an approach similar to analyzing traffic without differentiating between highways and side roads. More appropriate data are now available and were used here to analyze the relationship between trophic complexity and diversity in 59 quantitative food webs from seven studies (14-202 species) based on recently developed quantitative descriptors. Our results shed new light on food-web structure. First, webs are much simpler when considered quantitatively, and link density exhibits scale invariance or weak dependence on food-web size. Second, the "constant connectance" hypothesis is not supported: connectance decreases with web size in both qualitative and quantitative data. Complexity has occupied a central role in the discussion of food-web stability, and we explore the implications for this debate. Our findings indicate that larger webs are more richly endowed with the weak trophic interactions that recent theories show to be responsible for food-web stability.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Invertebrados/fisiología , Animales , Modelos Biológicos , Dinámica Poblacional , Estaciones del Año , Suelo
2.
J Vector Ecol ; 32(2): 328-35, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18260525

RESUMEN

Ochlerotatus triseriatus, the eastern treehole mosquito, reaches its northernmost range limit in the extreme southeast of Canada. As a known vector of West Nile and La Crosse encephalitis viruses and a potential vector of eastern equine encephalitis, its population biology is of interest. In southern Ontario, high larval densities occur in urban woodlots within sugar maple and American beech treehole communities comprising rotifers, nematode worms, mites, other dipterans, and scirtid beetles. Treehole water was characterized by low dissolved oxygen levels and seasonally variable pH and temperature, with the latter being most influential on local populations. Densities were significantly higher (up to 503 larvae 100 ml(-1)) in tree holes close to the forest floor (<1 m) and in experimental tree holes seeded with autumn-shed maple leaves as opposed to leaves of black oak and beech. In this locality, weekly sampling showed Oc. triseriatus to be multivoltine, with mass egg hatching beginning under coldwater (<10 degrees C) conditions in March/April, and thereafter producing three successful generations with a possible, less successful fourth in late summer. Some 1st instar larvae were present in water as cold as 0.7 degree C. Compared with larval psychodids living in the same tree hole, population losses of Oc. triseriatus due to washout during major rainfall events were negligible despite high flowthrough of water derived from stemflow.


Asunto(s)
Insectos Vectores , Ochlerotatus , Animales , Ecosistema , Concentración de Iones de Hidrógeno , Ontario , Oxígeno/análisis , Densidad de Población , Lluvia , Temperatura , Árboles , Agua/análisis
3.
Insects ; 8(3)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28754025

RESUMEN

Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this?

4.
Front Microbiol ; 6: 522, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26089816

RESUMEN

Microbial communities are responsible for the bulk of biogeochemical processing in temporary headwater streams, yet there is still relatively little known about how community structure and function respond to periodic drying. Moreover, the ability to sample temporary habitats can be a logistical challenge due to the limited capability to measure and predict the timing, intensity and frequency of wet-dry events. Unsurprisingly, published datasets on microbial community structure and function are limited in scope and temporal resolution and vary widely in the molecular methods applied. We compared environmental and microbial community datasets for permanent and temporary tributaries of two different North American headwater stream systems: Speed River (Ontario, Canada) and Parkers Creek (Maryland, USA). We explored whether taxonomic diversity and community composition were altered as a result of flow permanence and compared community composition amongst streams using different 16S microbial community methods (i.e., T-RFLP and Illumina MiSeq). Contrary to our hypotheses, and irrespective of method, community composition did not respond strongly to drying. In both systems, community composition was related to site rather than drying condition. Additional network analysis on the Parkers Creek dataset indicated a shift in the central microbial relationships between temporary and permanent streams. In the permanent stream at Parkers Creek, associations of methanotrophic taxa were most dominant, whereas associations with taxa from the order Nitrospirales were more dominant in the temporary stream, particularly during dry conditions. We compared these results with existing published studies from around the world and found a wide range in community responses to drying. We conclude by proposing three hypotheses that may address contradictory results and, when tested across systems, may expand understanding of the responses of microbial communities in temporary streams to natural and human-induced fluctuations in flow-status and permanence.

5.
Environ Sci Pollut Res Int ; 21(24): 13943-55, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25081003

RESUMEN

Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW.


Asunto(s)
Cambio Climático , Agua Subterránea/química , Ecosistema , Agua Dulce/química , Humanos
6.
ISME J ; 6(5): 1078-88, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22158391

RESUMEN

The dynamics of in situ bacterial communities in the hyporheic zone of an intermittent stream were described in high spatiotemporal detail. We assessed community dynamics in stream sediments and interstitial pore water over a two-year period using terminal-restriction fragment length polymorphism. Here, we show that sediments remained saturated despite months of drought and limited hydrologic connectivity. The intermittency of stream surface water affected interstitial pore water communities more than hyporheic sediment communities. Seasonal changes in bacterial community composition was significantly associated with water intermittency, phosphate concentrations, temperature, nitrate and dissolved organic carbon (DOC) concentrations. During periods of low- to no-surface water, communities changed from being rich in operational taxonomic units (OTUs) in isolated surface pools, to a few OTUs overall, including an overall decline in both common and rare taxa. Individual OTUs were compared between porewater and sediments. A total of 19% of identified OTUs existed in both porewater and sediment samples, suggesting that bacteria use hyporheic sediments as a type of refuge from dessication, transported through hydrologically connected pore spaces. Stream intermittency impacted bacterial diversity on rapid timescales (that is, within days), below-ground and in the hyporheic zone. Owing to the coupling of intermittent streams to the surrounding watershed, we stress the importance of understanding connectivity at the pore scale, consequences for below-ground and above-ground biodiversity and nutrient processing, and across both short- and long-time periods (that is, days to months to years).


Asunto(s)
Bacterias/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Ríos/microbiología , Microbiología del Agua , Bacterias/clasificación , Bacterias/genética , Biodiversidad , ADN Bacteriano/análisis , Polimorfismo de Longitud del Fragmento de Restricción , Estaciones del Año , Agua/química
7.
Freshw Biol ; 48(3): 548-564, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32390671

RESUMEN

SUMMARY 1. The ciliate populations of two temporary ponds in southern Ontario were studied throughout their aquatic phases in 2001. Pond I (∼1 ha) held water for 98 days, whereas Pond II (∼0.25 ha) held water for 34 days. Populations were assessed both within the ponds themselves and within a series of enclosures in which invertebrate predator pressure was manipulated. 2. In the natural pond water, total ciliate abundance in Pond II rose rapidly from day 1 increasing two orders of magnitude by day 7. In contrast, total abundance in Pond I began at the same level as in Pond II but increased much more slowly, reached a plateau of around 500 individuals L-1, and increased again late in the hydroperiod. 3. Despite being only 500 m apart, the two ponds were fairly dissimilar in terms of their species richness and species composition. Pond I contained 50 species compared with 70 species for Pond II, with only 24 species shared. Additional species occurred within the enclosures raising the total species richness to 145 species; 88 from Pond I, 104 from Pond II, with 47 species (30%) in common. Pond II contained more mid-sized ciliates (50-200 µm), whereas Pond I was dominated by smaller ciliates, especially in mid-May and early June. In Pond I, cumulative species richness throughout the hydroperiod was highest in the predator addition enclosures (65 ± 4 species), followed by the partial-predator exclusion enclosures (50 ± 4). Lowest species richness was found in the control enclosures (39 ± 2) and in the pondwater controls (39 ± 0). Differences between the ciliates in the natural pond water and the enclosures appeared to be related to a greater concentration of phytoplankton within the enclosures (perhaps resulting from extensive growth of duckweed, Lemna, outside), and higher densities of zooplankters in the pond. 4. The physicochemical environment influenced species richness, total abundance and the number of rare species (27 in Pond II versus 13 in Pond I). Variation in ciliate abundance in Pond I could be explained by the number of days after filling (39%) and enclosure treatment (23%). These two parameters also explained 72% of the variation in species richness in Pond I (46 and 26%, respectively). Sixty-five per cent of the variation in abundance in Pond II could be explained by the measured parameters: number of days after filling 27%, pH 19%, and nitrate levels 12%. Fifty-two per cent of the variation in species richness was explained by the environmental parameters, of which pH was the most influential. Species succession was a strong feature of both ponds and its relationship to environmental variables and the presence of other organisms is discussed. 5. Addition of invertebrate predators resulted in higher abundance and higher species richness for a limited time period in one of the ponds - suggesting that differences in foodweb dynamics may influence ciliate community composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA