Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 18(8): e1010115, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35984862

RESUMEN

The fine-tuning of gene expression is critical for all cellular processes; aberrations in this activity can lead to pathology, and conversely, resilience. As their role in coordinating organismal responses to both internal and external factors have increasingly come into focus, small non-coding RNAs have emerged as an essential component to disease etiology. Using Systemic RNA interference Defective (SID) mutants of the nematode Caenorhabditis elegans, deficient in gene silencing, we examined the potential consequences of dysfunctional epigenomic regulation in the context of Parkinson's disease (PD). Specifically, the loss of either the sid-1 or sid-3 genes, which encode a dsRNA transporter and an endocytic regulatory non-receptor tyrosine kinase, respectively, conferred neuroprotection to dopaminergic (DA) neurons in an established transgenic C. elegans strain wherein overexpression of human α-synuclein (α-syn) from a chromosomally integrated multicopy transgene causes neurodegeneration. We further show that knockout of a specific microRNA, mir-2, attenuates α-syn neurotoxicity; suggesting that the native targets of mir-2-dependent gene silencing represent putative neuroprotective modulators. In support of this, we demonstrated that RNAi knockdown of multiple mir-2 targets enhanced α-syn-induced DA neurodegeneration. Moreover, we demonstrate that mir-2 overexpression originating in the intestine can induce neurodegeneration of DA neurons, an effect that was reversed by pharmacological inhibition of SID-3 activity. Interestingly, sid-1 mutants retained mir-2-induced enhancement of neurodegeneration. Transcriptomic analysis of α-syn animals with and without a sid-1 mutation revealed 27 differentially expressed genes with human orthologs related to a variety of diseases, including PD. Among these was pgp-8, encoding a P-glycoprotein-related ABC transporter. Notably, sid-1; pgp-8 double mutants abolished the neurodegeneration resulting from intestinal mir-2 overexpression. This research positions known regulators of small RNA-dependent gene silencing within a framework that facilitates mechanistic evaluation of epigenetic responses to exogenous and endogenous factors influencing DA neurodegeneration, revealing a path toward new targets for therapeutic intervention of PD.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedad de Parkinson , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Enfermedad de Parkinson/patología , Interferencia de ARN , ARN Bicatenario/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Cells ; 12(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37190079

RESUMEN

Oxidative stress is a contributing factor to Parkinson's disease (PD). Considering the prevalence of sporadic PD, environmental exposures are postulated to increase reactive oxygen species and either incite or exacerbate neurodegeneration. We previously determined that exposure to the common soil bacterium, Streptomyces venezuelae (S. ven), enhanced oxidative stress and mitochondrial dysfunction in Caenorhabditis elegans, leading to dopaminergic (DA) neurodegeneration. Here, S. ven metabolite exposure in C. elegans was followed by RNA-Seq analysis. Half of the differentially identified genes (DEGs) were associated with the transcription factor DAF-16 (FOXO), which is a key node in regulating stress response. Our DEGs were enriched for Phase I (CYP) and Phase II (UGT) detoxification genes and non-CYP Phase I enzymes associated with oxidative metabolism, including the downregulated xanthine dehydrogenase gene, xdh-1. The XDH-1 enzyme exhibits reversible interconversion to xanthine oxidase (XO) in response to calcium. S. ven metabolite exposure enhanced XO activity in C. elegans. The chelation of calcium diminishes the conversion of XDH-1 to XO and results in neuroprotection from S. ven exposure, whereas CaCl2 supplementation enhanced neurodegeneration. These results suggest a defense mechanism that delimits the pool of XDH-1 available for interconversion to XO, and associated ROS production, in response to metabolite exposure.


Asunto(s)
Caenorhabditis elegans , Xantina Deshidrogenasa , Animales , Xantina Deshidrogenasa/metabolismo , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Xantina Oxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
iScience ; 26(6): 106859, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37260751

RESUMEN

Failure of inherently protective cellular processes and misfolded protein-associated stress contribute to the progressive loss of dopamine (DA) neurons characteristic of Parkinson's disease (PD). A disease-modifying role for the microbiome has recently emerged in PD, representing an impetus to employ the soil-dwelling nematode, Caenorhabditis elegans, as a preclinical model to correlate changes in gene expression with neurodegeneration in transgenic animals grown on distinct bacterial food sources. Even under tightly controlled conditions, hundreds of differentially expressed genes and a robust neuroprotective response were discerned between clonal C. elegans strains overexpressing human alpha-synuclein in the DA neurons fed either one of only two subspecies of Escherichia coli. Moreover, this neuroprotection persisted in a transgenerational manner. Genetic analysis revealed a requirement for the double-stranded RNA (dsRNA)-mediated gene silencing machinery in conferring neuroprotection. In delineating the contribution of individual genes, evidence emerged for endopeptidase activity and heme-associated pathway(s) as mechanistic components for modulating dopaminergic neuroprotection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA