Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Radiology ; 298(1): 60-70, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33201788

RESUMEN

Background The Eastern Cooperative Oncology Group and American College of Radiology Imaging Network Cancer Research Group A6702 multicenter trial helped confirm the potential of diffusion-weighted MRI for improving differential diagnosis of suspicious breast abnormalities and reducing unnecessary biopsies. A prespecified secondary objective was to explore the relative value of different approaches for quantitative assessment of lesions at diffusion-weighted MRI. Purpose To determine whether alternate calculations of apparent diffusion coefficient (ADC) can help further improve diagnostic performance versus mean ADC values alone for analysis of suspicious breast lesions at MRI. Materials and Methods This prospective trial (ClinicalTrials.gov identifier: NCT02022579) enrolled consecutive women (from March 2014 to April 2015) with a Breast Imaging Reporting and Data System category of 3, 4, or 5 at breast MRI. All study participants underwent standardized diffusion-weighted MRI (b = 0, 100, 600, and 800 sec/mm2). Centralized ADC measures were performed, including manually drawn whole-lesion and hotspot regions of interest, histogram metrics, normalized ADC, and variable b-value combinations. Diagnostic performance was estimated by using the area under the receiver operating characteristic curve (AUC). Reduction in biopsy rate (maintaining 100% sensitivity) was estimated according to thresholds for each ADC metric. Results Among 107 enrolled women, 81 lesions with outcomes (28 malignant and 53 benign) in 67 women (median age, 49 years; interquartile range, 41-60 years) were analyzed. Among ADC metrics tested, none improved diagnostic performance versus standard mean ADC (AUC, 0.59-0.79 vs AUC, 0.75; P = .02-.84), and maximum ADC had worse performance (AUC, 0.52; P < .001). The 25th-percentile ADC metric provided the best performance (AUC, 0.79; 95% CI: 0.70, 0.88), and a threshold using median ADC provided the greatest reduction in biopsy rate of 23.9% (95% CI: 14.8, 32.9; 16 of 67 BI-RADS category 4 and 5 lesions). Nonzero minimum b value (100, 600, and 800 sec/mm2) did not improve the AUC (0.74; P = .28), and several combinations of two b values (0 and 600, 100 and 600, 0 and 800, and 100 and 800 sec/mm2; AUC, 0.73-0.76) provided results similar to those seen with calculations of four b values (AUC, 0.75; P = .17-.87). Conclusion Mean apparent diffusion coefficient calculated with a two-b-value acquisition is a simple and sufficient diffusion-weighted MRI metric to augment diagnostic performance of breast MRI compared with more complex approaches to apparent diffusion coefficient measurement. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Adulto , Anciano , Mama/diagnóstico por imagen , Diagnóstico Diferencial , Femenino , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Sociedades Médicas , Adulto Joven
2.
Radiology ; 301(2): 295-308, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34427465

RESUMEN

Background Suppression of background parenchymal enhancement (BPE) is commonly observed after neoadjuvant chemotherapy (NAC) at contrast-enhanced breast MRI. It was hypothesized that nonsuppressed BPE may be associated with inferior response to NAC. Purpose To investigate the relationship between lack of BPE suppression and pathologic response. Materials and Methods A retrospective review was performed for women with menopausal status data who were treated for breast cancer by one of 10 drug arms (standard NAC with or without experimental agents) between May 2010 and November 2016 in the Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2, or I-SPY 2 TRIAL (NCT01042379). Patients underwent MRI at four points: before treatment (T0), early treatment (T1), interregimen (T2), and before surgery (T3). BPE was quantitatively measured by using automated fibroglandular tissue segmentation. To test the hypothesis effectively, a subset of examinations with BPE with high-quality segmentation was selected. BPE change from T0 was defined as suppressed or nonsuppressed for each point. The Fisher exact test and the Z tests of proportions with Yates continuity correction were used to examine the relationship between BPE suppression and pathologic complete response (pCR) in hormone receptor (HR)-positive and HR-negative cohorts. Results A total of 3528 MRI scans from 882 patients (mean age, 48 years ± 10 [standard deviation]) were reviewed and the subset of patients with high-quality BPE segmentation was determined (T1, 433 patients; T2, 396 patients; T3, 380 patients). In the HR-positive cohort, an association between lack of BPE suppression and lower pCR rate was detected at T2 (nonsuppressed vs suppressed, 11.8% [six of 51] vs 28.9% [50 of 173]; difference, 17.1% [95% CI: 4.7, 29.5]; P = .02) and T3 (nonsuppressed vs suppressed, 5.3% [two of 38] vs 27.4% [48 of 175]; difference, 22.2% [95% CI: 10.9, 33.5]; P = .003). In the HR-negative cohort, patients with nonsuppressed BPE had lower estimated pCR rate at all points, but the P values for the association were all greater than .05. Conclusions In hormone receptor-positive breast cancer, lack of background parenchymal enhancement suppression may indicate inferior treatment response. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Philpotts in this issue.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Quimioterapia Adyuvante/métodos , Medios de Contraste , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Terapia Neoadyuvante/métodos , Adulto , Anciano , Mama/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
3.
J Magn Reson Imaging ; 53(1): 271-282, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32614125

RESUMEN

BACKGROUND: Multi-b-valued/multi-shell diffusion provides potentially valuable metrics in breast MRI but suffers from low signal-to-noise ratio and has potentially long scan times. PURPOSE: To investigate the effects of model-based denoising with no loss of spatial resolution on multi-shell breast diffusion MRI; to determine the effects of downsampling on multi-shell diffusion; and to quantify these effects in multi-b-valued (three directions per b-value) acquisitions. STUDY TYPE: Prospective ("fully-sampled" multi-shell) and retrospective longitudinal (multi-b). SUBJECTS: One normal subject (multi-shell) and 10 breast cancer subjects imaging at four timepoints (multi-b). FIELD STRENGTH/SEQUENCE: 3T multi-shell acquisition and 1.5T multi-b acquisition. ASSESSMENT: The "fully-sampled" multi-shell acquisition was retrospectively downsampled to determine the bias and error from downsampling. Mean, axial/parallel, radial diffusivity, and fractional anisotropy (FA) were analyzed. Denoising was applied retrospectively to the multi-b-valued breast cancer subject dataset and assessed subjectively for image noise level and tumor conspicuity. STATISTICAL TESTS: Parametric paired t-test (P < 0.05 considered statistically significant) on mean and coefficient of variation of each metric-the apparent diffusion coefficient (ADC) from all b-values, fast ADC, slow ADC, and perfusion fraction. Paired and two-sample t-tests for each metric comparing normal and tumor tissue. RESULTS: In the multi-shell data, denoising effectively suppressed FA (-45% to -78%), with small biases in mean diffusivity (-5% in normal, +23% in tumor, and -4% in vascular compartments). In the multi-b data, denoising resulted in small biases to the ADC metrics in tumor and normal contralateral tissue (by -3% to +11%), but greatly reduced the coefficient of variation for every metric (by -1% to -24%). Denoising improved differentiation of tumor and normal tissue regions in most metrics and timepoints; subjectively, image noise level and tumor conspicuity were improved in the fast ADC maps. DATA CONCLUSION: Model-based denoising effectively suppressed erroneously high FA and improved the accuracy of diffusivity metrics. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Mama , Imagen de Difusión por Resonancia Magnética , Mama/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios Retrospectivos
4.
J Magn Reson Imaging ; 52(3): 697-709, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31746088

RESUMEN

Historically, breast magnetic resonance imaging (MRI) was not considered an effective modality in the evaluation of ductal carcinoma in situ (DCIS). Over the past decade this has changed, with studies demonstrating that MRI is the most sensitive imaging tool for detection of all grades of DCIS. It has been suggested that not only is breast MRI the most sensitive imaging tool for detection but it may also detect the most clinically relevant DCIS lesions. The role and outcomes of MRI in the preoperative setting for patients with DCIS remains controversial; however, several studies have shown benefit in the preoperative evaluation of extent of disease as well as predicting an underlying invasive component. The most common presentation of DCIS on MRI is nonmass enhancement (NME) in a linear or segmental distribution pattern. Maximizing breast MRI spatial resolution is therefore beneficial, given the frequent presentation of DCIS as NME on MRI. Emerging MRI techniques, such as diffusion-weighted imaging (DWI), have shown promising potential to discriminate DCIS from benign and invasive lesions. Future opportunities including advanced imaging visual techniques, radiomics/radiogenomics, and machine learning / artificial intelligence may also be applicable to the detection and treatment of DCIS. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:697-709.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Inteligencia Artificial , Mama , Neoplasias de la Mama/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
5.
J Magn Reson Imaging ; 50(6): 1742-1753, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31026118

RESUMEN

BACKGROUND: The change in apparent diffusion coefficient (ADC) measured from diffusion-weighted imaging (DWI) has been shown to be predictive of pathologic complete response (pCR) for patients with locally invasive breast cancer undergoing neoadjuvant chemotherapy. PURPOSE: To investigate the additive value of tumor ADC in a multicenter clinical trial setting. STUDY TYPE: Retrospective analysis of multicenter prospective data. POPULATION: In all, 415 patients who enrolled in the I-SPY 2 TRIAL from 2010 to 2014 were included. FIELD STRENGTH/SEQUENCE: 1.5T or 3T MRI system using a fat-suppressed single-shot echo planar imaging sequence with b-values of 0 and 800 s/mm2 for DWI, followed by a T1-weighted sequence for dynamic contrast-enhanced MRI (DCE-MRI) performed at pre-NAC (T0), after 3 weeks of NAC (T1), mid-NAC (T2), and post-NAC (T3). ASSESSMENT: Functional tumor volume and tumor ADC were measured at each MRI exam; pCR measured at surgery was assessed as the binary outcome. Breast cancer subtype was defined by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status. STATISTICAL TESTS: A logistic regression model was used to evaluate associations between MRI predictors with pCR. The cross-validated area under the curve (AUC) was calculated to assess the predictive performance of the model with and without ADC. RESULTS: In all, 354 patients (128 HR+/HER2-, 60 HR+/HER2+, 34 HR-/HER2+, 132 HR-/HER2-) were included in the analysis. In the full cohort, adding ADC predictors increased the AUC from 0.76 to 0.78 at mid-NAC and from 0.76 to 0.81 at post-NAC. In HR/HER2 subtypes, the AUC increased from 0.52 to 0.65 at pre-NAC for HR+/HER2-, from 0.67 to 0.73 at mid-NAC and from 0.72 to 0.76 at post-NAC for HR+/HER2+, from 0.71 to 0.81 at post-NAC for triple negatives. DATA CONCLUSION: The addition of ADC to standard functional tumor volume MRI showed improvement in the prediction of treatment response in HR+ and triple-negative breast cancer. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 4 J. Magn. Reson. Imaging 2019;50:1742-1753.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Terapia Neoadyuvante , Adulto , Anciano , Área Bajo la Curva , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Terapia Combinada , Ciclofosfamida/administración & dosificación , Esquema de Medicación , Femenino , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Estadificación de Neoplasias , Paclitaxel/administración & dosificación , Estudios Prospectivos , Trastuzumab/administración & dosificación , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos
7.
Magn Reson Med ; 79(5): 2564-2575, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28913930

RESUMEN

PURPOSE: To determine the in vitro accuracy, test-retest repeatability, and interplatform reproducibility of T1 quantification protocols used for dynamic contrast-enhanced MRI at 1.5 and 3 T. METHODS: A T1 phantom with 14 samples was imaged at eight centers with a common inversion-recovery spin-echo (IR-SE) protocol and a variable flip angle (VFA) protocol using seven flip angles, as well as site-specific protocols (VFA with different flip angles, variable repetition time, proton density, and Look-Locker inversion recovery). Factors influencing the accuracy (deviation from reference NMR T1 measurements) and repeatability were assessed using general linear mixed models. Interplatform reproducibility was assessed using coefficients of variation. RESULTS: For the common IR-SE protocol, accuracy (median error across platforms = 1.4-5.5%) was influenced predominantly by T1 sample (P < 10-6 ), whereas test-retest repeatability (median error = 0.2-8.3%) was influenced by the scanner (P < 10-6 ). For the common VFA protocol, accuracy (median error = 5.7-32.2%) was influenced by field strength (P = 0.006), whereas repeatability (median error = 0.7-25.8%) was influenced by the scanner (P < 0.0001). Interplatform reproducibility with the common VFA was lower at 3 T than 1.5 T (P = 0.004), and lower than that of the common IR-SE protocol (coefficient of variation 1.5T: VFA/IR-SE = 11.13%/8.21%, P = 0.028; 3 T: VFA/IR-SE = 22.87%/5.46%, P = 0.001). Among the site-specific protocols, Look-Locker inversion recovery and VFA (2-3 flip angles) protocols showed the best accuracy and repeatability (errors < 15%). CONCLUSIONS: The VFA protocols with 2 to 3 flip angles optimized for different applications achieved acceptable balance of extensive spatial coverage, accuracy, and repeatability in T1 quantification (errors < 15%). Further optimization in terms of flip-angle choice for each tissue application, and the use of B1 correction, are needed to improve the robustness of VFA protocols for T1 mapping. Magn Reson Med 79:2564-2575, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador , Encéfalo/diagnóstico por imagen , Mama/diagnóstico por imagen , Medios de Contraste/química , Femenino , Humanos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Masculino , Neoplasias/diagnóstico por imagen , Próstata/diagnóstico por imagen , Reproducibilidad de los Resultados
8.
J Magn Reson Imaging ; 44(4): 846-55, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27008431

RESUMEN

PURPOSE: To assess the ability of a recent, anatomically designed breast phantom incorporating T1 and diffusion elements to serve as a quality control device for quantitative comparison of apparent diffusion coefficient (ADC) measurements calculated from diffusion-weighted MRI (DWI) within and across MRI systems. MATERIALS AND METHODS: A bilateral breast phantom incorporating multiple T1 and diffusion tissue mimics and a geometric distortion array was imaged with DWI on 1.5 Tesla (T) and 3.0T scanners from two different manufacturers, using three different breast coils (three configurations total). Multiple measurements were acquired to assess the bias and variability of different diffusion weighted single-shot echo-planar imaging sequences on the scanner-coil systems. RESULTS: The repeatability of ADC measurements was mixed: the standard deviation relative to baseline across scanner-coil-sequences ranged from low variability (0.47, 95% confidence interval [CI]: 0.22-1.00) to high variability (1.69, 95% CI: 0.17-17.26), depending on material, with the lowest and highest variability from the same scanner-coil-sequence. Assessment of image distortion showed that right/left measurements of the geometric distortion array were 1 to 16% larger on the left coil side compared with the right coil side independent of scanner-coil systems, diffusion weighting, and phase-encoding direction. CONCLUSION: This breast phantom can be used to measure scanner-coil-sequence bias and variability for DWI. When establishing a multisystem study, this breast phantom may be used to minimize protocol differences (e.g., due to available sequences or shimming technique), to correct for bias that cannot be minimized, and to weigh results from each system depending on respective variability. J. Magn. Reson. Imaging 2016. J. MAGN. RESON. IMAGING 2016;44:846-855.


Asunto(s)
Artefactos , Análisis de Falla de Equipo/instrumentación , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Diseño de Equipo , Análisis de Falla de Equipo/métodos , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
J Magn Reson Imaging ; 44(3): 610-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26949897

RESUMEN

PURPOSE: We present a breast phantom designed to enable quantitative assessment of measurements of T1 relaxation time, apparent diffusion coefficient (ADC), and other attributes of breast tissue, with long-term support from a national metrology institute. MATERIALS AND METHODS: A breast phantom was created with two independent, interchangeable units for diffusion and T1 /T2 relaxation, each with flexible outer shells. The T1 unit was filled with corn syrup solution and grapeseed oil to mimic the relaxation behavior of fibroglandular and fatty tissues, respectively. The diffusion unit contains plastic tubes filled with aqueous solutions of polyvinylpyrrolidone (PVP) to modulate the ADC. The phantom was imaged at 1.5T and 3.0T using magnetic resonance imaging (MRI) scanners and common breast coils from multiple manufacturers to assess T1 and T2 relaxation time and ADC values. RESULTS: The fibroglandular mimic exhibited target T1 values on 1.5T and 3.0T clinical systems (25-75 percentile range: 1289 to 1400 msec and 1533 to 1845 msec, respectively) across all bore temperatures. PVP solutions mimicked the range of ADC values from malignant tumors to normal breast tissue (40% PVP median: 633 × 10(-6) mm(2) /s to 0% PVP median: 2231 × 10(-6) mm(2) /s) at temperatures of 17-24°C. The interchangeable phantom units allowed both the diffusion and T1 /T2 units to be tested on the left and right sides of the coil to assess any variation. CONCLUSION: This phantom enables T1 and ADC measurements, fits in a variety of clinical breast coils, and can serve as a quality control tool to facilitate the standardization of quantitative measurements for breast MRI. J. Magn. Reson. Imaging 2016;44:610-619.


Asunto(s)
Materiales Biomiméticos/química , Mama/diagnóstico por imagen , Mama/fisiología , Interpretación de Imagen Asistida por Computador/instrumentación , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Mama/anatomía & histología , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
J Magn Reson Imaging ; 42(4): 908-19, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25758543

RESUMEN

PURPOSE: To evaluate a gradient nonlinearity correction (GNC) program for quantitative apparent diffusion coefficient (ADC) measurements on phantom and human subject diffusion-weighted (DW) magnetic resonance imaging (MRI) scans in a multicenter breast cancer treatment response study MATERIALS AND METHODS: A GNC program using fifth-order spherical harmonics for gradient modeling was applied retrospectively to qualification phantom and human subject scans. Ice-water phantoms of known diffusion coefficient were scanned at five different study centers with different scanners and receiver coils. Human in vivo data consisted of baseline and early-treatment exams on 54 patients from four sites. ADC maps were generated with and without GNC. Regions of interest were defined to quantify absolute errors and changes with GNC over breast imaging positions. RESULTS: Phantom ADC errors varied with region of interest (ROI) position and scanner configuration; the mean error by configuration ranged from 1.4% to 19.9%. GNC significantly reduced the overall mean error for all sites from 9.9% to 0.6% (P = 0.016). Spatial dependence of GNC was highest in the right-left (RL) and anterior-posterior (AP) directions. Human subject mean tumor ADC was reduced 0.2 to 12% by GNC at different sites. By regression, every 1-cm change in tumor ROI position between baseline and follow-up visits resulted in an estimated change of 2.4% in the ADC early-treatment response measurement. CONCLUSION: GNC is effective for removing large, system-dependent errors in quantitative breast DWI. GNC may be important in ensuring reproducibility in multicenter studies and in reducing errors in longitudinal treatment response measures arising from spatial variations in tumor position between visits.


Asunto(s)
Artefactos , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/normas , Femenino , Humanos , Aumento de la Imagen/normas , Persona de Mediana Edad , Dinámicas no Lineales , Guías de Práctica Clínica como Asunto , Pronóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento , Estados Unidos
11.
J Magn Reson Imaging ; 39(5): 1308-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24719242

RESUMEN

PURPOSE: To evaluate diffusion changes in the breast tumor-stromal boundary and adjacent tissue in response to neoadjuvant chemotherapy using high resolution diffusion-weighted imaging (HR-DWI). MATERIALS AND METHODS: Seven patients with invasive breast cancer were imaged with HR-DWI before and early during treatment. The mean apparent diffusion coefficient (ADC) was plotted in 1-mm increments around the tumor boundary. Early change in ADC was measured for tumor, tumor boundary, and stromal regions, and the relationship to treatment response was evaluated using Spearman's correlation. RESULTS: Statistically significant correlations between treatment response and early changes in ADC were found for: (i) whole tumor (ρ = 0.93, 95% confidence interval [CI] = (0.58, 0.99), P = 0.003); (ii) tumor rim (ρ = 0.75, 95% CI = (-0.007, 0.96), P = 0.05); and (iii) boundary transition region (ρ = 0.86, 95% CI = (0.29, 0.98), P = 0.01). Early change in ADC of distal stroma had a marginally statistically significant positive correlation to treatment response (ρ = 0.71, 95% CI = (-0.084, 0.95), P = 0.07). CONCLUSION: Proximity-dependent evaluation of HR-DWI data in the breast tumor-stromal boundary and adjacent tissue may provide information about response to therapy.


Asunto(s)
Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Hidrocarburos Aromáticos con Puentes/administración & dosificación , Quimioterapia Adyuvante , Doxorrubicina/administración & dosificación , Femenino , Humanos , Invasividad Neoplásica , Proyectos Piloto , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Taxoides/administración & dosificación , Resultado del Tratamiento
12.
Tomography ; 8(3): 1208-1220, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35645385

RESUMEN

This study evaluated the inter-reader agreement of tumor apparent diffusion coefficient (ADC) measurements performed on breast diffusion-weighted imaging (DWI) for assessing treatment response in a multi-center clinical trial of neoadjuvant chemotherapy (NAC) for breast cancer. DWIs from 103 breast cancer patients (mean age: 46 ± 11 years) acquired at baseline and after 3 weeks of treatment were evaluated independently by two readers. Three types of tumor regions of interests (ROIs) were delineated: multiple-slice restricted, single-slice restricted and single-slice tumor ROIs. Compared to tumor ROIs, restricted ROIs were limited to low ADC areas of enhancing tumor only. We found excellent agreement (intraclass correlation coefficient [ICC] ranged from 0.94 to 0.98) for mean ADC. Higher ICCs were observed in multiple-slice restricted ROIs (range: 0.97 to 0.98) than in other two ROI types (both in the range of 0.94 to 0.98). Among the three ROI types, the highest area under the receiver operating characteristic curves (AUCs) were observed for mean ADC of multiple-slice restricted ROIs (0.65, 95% confidence interval [CI]: 0.52-0.79 and 0.67, 95% CI: 0.53-0.81 for Reader 1 and Reader 2, respectively). In conclusion, mean ADC values of multiple-slice restricted ROI showed excellent agreement and similar predictive performance for pathologic complete response between the two readers.


Asunto(s)
Neoplasias de la Mama , Adulto , Mama , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Persona de Mediana Edad , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados
13.
Tomography ; 8(1): 364-375, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202195

RESUMEN

The study aims to test the long-term stability of gradient characteristics for model-based correction of diffusion weighting (DW) bias in an apparent diffusion coefficient (ADC) for multisite imaging trials. Single spin echo (SSE) DWI of a long-tube ice-water phantom was acquired quarterly on six MR scanners over two years for individual diffusion gradient channels, along with B0 mapping, as a function of right-left (RL) and superior-inferior (SI) offsets from the isocenter. Additional double spin-echo (DSE) DWI was performed on two systems. The offset dependences of derived ADC were fit to 4th-order polynomials. Chronic shim gradients were measured from spatial derivatives of B0 maps along the tube direction. Gradient nonlinearity (GNL) was modeled using vendor-provided gradient field descriptions. Deviations were quantified by root-mean-square differences (RMSD), normalized to reference ice-water ADC, between the model and reference (RMSDREF), measurement and model (RMSDEXP), and temporal measurement variations (RMSDTMP). Average RMSDREF was 4.9 ± 3.2 (%RL) and -14.8 ± 3.8 (%SI), and threefold larger than RMSDEXP. RMSDTMP was close to measurement errors (~3%). GNL-induced bias across gradient systems varied up to 20%, while deviation from the model accounted at most for 6.5%, and temporal variation for less than 3% of ADC reproducibility error. Higher SSE RMSDEXP = 7.5-11% was reduced to 2.5-4.8% by DSE, consistent with the eddy current origin. Measured chronic shim gradients below 0.1 mT/m had a minor contribution to ADC bias. The demonstrated long-term stability of spatial ADC profiles and consistency with system GNL models justifies retrospective and prospective DW bias correction based on system gradient design models. Residual errors due to eddy currents and shim gradients should be corrected independent of GNL.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética/métodos , Fantasmas de Imagen , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios Retrospectivos
14.
Cancers (Basel) ; 14(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36139594

RESUMEN

This study tested the hypothesis that a change in the apparent diffusion coefficient (ADC) measured in diffusion-weighted MRI (DWI) is an independent imaging marker, and ADC performs better than functional tumor volume (FTV) for assessing treatment response in patients with locally advanced breast cancer receiving neoadjuvant immunotherapy. A total of 249 patients were randomized to standard neoadjuvant chemotherapy with pembrolizumab (pembro) or without pembrolizumab (control). DCE-MRI and DWI, performed prior to and 3 weeks after the start of treatment, were analyzed. Percent changes of tumor ADC metrics (mean, 5th to 95th percentiles of ADC histogram) and FTV were evaluated for the prediction of pathologic complete response (pCR) using a logistic regression model. The area under the ROC curve (AUC) estimated for the percent change in mean ADC was higher in the pembro cohort (0.73, 95% confidence interval [CI]: 0.52 to 0.93) than in the control cohort (0.63, 95% CI: 0.43 to 0.83). In the control cohort, the percent change of the 95th percentile ADC achieved the highest AUC, 0.69 (95% CI: 0.52 to 0.85). In the pembro cohort, the percent change of the 25th percentile ADC achieved the highest AUC, 0.75 (95% CI: 0.55 to 0.95). AUCs estimated for percent change of FTV were 0.61 (95% CI: 0.39 to 0.83) and 0.66 (95% CI: 0.47 to 0.85) for the pembro and control cohorts, respectively. Tumor ADC may perform better than FTV to predict pCR at an early treatment time-point during neoadjuvant immunotherapy.

15.
Magn Reson Med ; 66(6): 1722-30, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21688315

RESUMEN

Measurement of individual organ tissue oxygen levels can provide information to help evaluate and optimize medical interventions in many areas including wound healing, resuscitation strategies, and cancer therapeutics. Echo planar (19) F MRI has previously focused on tumor oxygen measurement at low oxygen levels (pO(2)) <30 mmHg. It uses the linear relationship between spin-lattice relaxation rate (R(1)) of hexafluorobenzene (HFB) and pO(2). The feasibility of this technique for a wider range of pO(2) values and individual organ tissue pO(2) measurement was investigated in a rat model. Spin-lattice relaxation times (T(1) = 1/R(1)) of hexafluorobenzene were measured using (19) F saturation recovery echo planar imaging. Initial in vitro studies validated the linear relationship between R(1) and pO(2) from 0 to 760 mmHg oxygen partial pressure at 25, 37, and 41°C at 7 Tesla for hexafluorobenzene. In vivo experiments measured rat tissue oxygen (ptO2) levels of brain, kidney, liver, gut, muscle, and skin during inhalation of both 30 and 100% oxygen. All organ ptO(2) values significantly increased with hyperoxia (P < 0.001). This study demonstrates that (19) F MRI of hexafluorobenzene offers a feasible tool to measure regional ptO2 in vivo, and that hyperoxia significantly increases ptO2 of multiple organs in a rat model.


Asunto(s)
Imagen Eco-Planar/métodos , Radioisótopos de Flúor/farmacocinética , Oximetría/métodos , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Vísceras/fisiología , Animales , Masculino , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley
16.
J Breast Imaging ; 3(1): 44-56, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33543122

RESUMEN

OBJECTIVE: The A6702 multisite trial confirmed that apparent diffusion coefficient (ADC) measures can improve breast MRI accuracy and reduce unnecessary biopsies, but also found that technical issues rendered many lesions non-evaluable on diffusion-weighted imaging (DWI). This secondary analysis investigated factors affecting lesion evaluability and impact on diagnostic performance. METHODS: The A6702 protocol was IRB-approved at 10 institutions; participants provided informed consent. In total, 103 women with 142 MRI-detected breast lesions (BI-RADS assessment category 3, 4, or 5) completed the study. DWI was acquired at 1.5T and 3T using a four b-value, echo-planar imaging sequence. Scans were reviewed for multiple quality factors (artifacts, signal-to-noise, misregistration, and fat suppression); lesions were considered non-evaluable if there was low confidence in ADC measurement. Associations of lesion evaluability with imaging and lesion characteristics were determined. Areas under the receiver operating characteristic curves (AUCs) were compared using bootstrapping. RESULTS: Thirty percent (42/142) of lesions were non-evaluable on DWI; 23% (32/142) with image quality issues, 7% (10/142) with conspicuity and/or localization issues. Misregistration was the only factor associated with non-evaluability (P = 0.001). Smaller (≤10 mm) lesions were more commonly non-evaluable than larger lesions (p <0.03), though not significant after multiplicity correction. The AUC for differentiating benign and malignant lesions increased after excluding non-evaluable lesions, from 0.61 (95% CI: 0.50-0.71) to 0.75 (95% CI: 0.65-0.84). CONCLUSION: Image quality remains a technical challenge in breast DWI, particularly for smaller lesions. Protocol optimization and advanced acquisition and post-processing techniques would help to improve clinical utility.

17.
Tomography ; 6(2): 77-85, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32548283

RESUMEN

We investigated the impact of magnetic resonance imaging (MRI) protocol adherence on the ability of functional tumor volume (FTV), a quantitative measure of tumor burden measured from dynamic contrast-enhanced MRI, to predict response to neoadjuvant chemotherapy. We retrospectively reviewed dynamic contrast-enhanced breast MRIs for 990 patients enrolled in the multicenter I-SPY 2 TRIAL. During neoadjuvant chemotherapy, each patient had 4 MRI visits (pretreatment [T0], early-treatment [T1], inter-regimen [T2], and presurgery [T3]). Protocol adherence was rated for 7 image quality factors at T0-T2. Image quality factors confirmed by DICOM header (acquisition duration, early phase timing, field of view, and spatial resolution) were adherent if the scan parameters followed the standardized imaging protocol, and changes from T0 for a single patient's visits were limited to defined ranges. Other image quality factors (contralateral image quality, patient motion, and contrast administration error) were considered adherent if imaging issues were absent or minimal. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of FTV change (percent change of FTV from T0 to T1 and T2) in predicting pathological complete response. FTV changes with adherent image quality in all factors had higher estimated AUC than those with non-adherent image quality, although the differences did not reach statistical significance (T1, 0.71 vs. 0.66; T2, 0.72 vs. 0.68). These data highlight the importance of MRI protocol adherence to predefined scan parameters and the impact of data quality on the predictive performance of FTV in the breast cancer neoadjuvant setting.


Asunto(s)
Neoplasias de la Mama , Imagen por Resonancia Magnética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Estudios Multicéntricos como Asunto , Terapia Neoadyuvante , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos , Resultado del Tratamiento
18.
Tomography ; 6(2): 86-92, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32548284

RESUMEN

The presented analysis of multisite, multiplatform clinical oncology trial data sought to enhance quantitative utility of the apparent diffusion coefficient (ADC) metric, derived from diffusion-weighted magnetic resonance imaging, by reducing technical interplatform variability owing to systematic gradient nonlinearity (GNL). This study tested the feasibility and effectiveness of a retrospective GNL correction (GNC) implementation for quantitative quality control phantom data, as well as in a representative subset of 60 subjects from the ACRIN 6698 breast cancer therapy response trial who were scanned on 6 different gradient systems. The GNL ADC correction based on a previously developed formalism was applied to trace-DWI using system-specific gradient-channel fields derived from vendor-provided spherical harmonic tables. For quantitative DWI phantom images acquired in typical breast imaging positions, the GNC improved interplatform accuracy from a median of 6% down to 0.5% and reproducibility of 11% down to 2.5%. Across studied trial subjects, GNC increased low ADC (<1 µm2/ms) tumor volume by 16% and histogram percentiles by 5%-8%, uniformly shifting percentile-dependent ADC thresholds by ∼0.06 µm2/ms. This feasibility study lays the grounds for retrospective GNC implementation in multiplatform clinical imaging trials to improve accuracy and reproducibility of ADC metrics used for breast cancer treatment response prediction.


Asunto(s)
Neoplasias de la Mama , Mama , Imagen de Difusión por Resonancia Magnética , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Estudios de Factibilidad , Femenino , Humanos , Dinámicas no Lineales , Reproducibilidad de los Resultados , Estudios Retrospectivos
19.
Tomography ; 6(2): 216-222, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32548299

RESUMEN

This retrospective study examined magnetic resonance imaging (MRI)-derived tumor sphericity (SPH) as a quantitative measure of breast tumor morphology, and investigated the association between SPH and reader-assessed morphological pattern (MP). In addition, association of SPH with pathologic complete response was evaluated in patients enrolled in an adaptively randomized clinical trial designed to rapidly identify new agents for breast cancer. All patients underwent MRI examinations at multiple time points during the treatment. SPH values from pretreatment (T0) and early-treatment (T1) were investigated in this study. MP on T0 dynamic contrast-enhanced MRI was ranked from 1 to 5 in 220 patients. Mean SPH values decreased with the increased order of MP. SPH was higher in patients with pathologic complete response than in patients without (difference at T0: 0.04, 95% confidence interval [CI]: 0.02-0.05, P < .001; difference at T1: 0.03, 95% CI: 0.02-0.04, P < .001). The area under the receiver operating characteristic curve was estimated as 0.61 (95% CI, 0.57-0.65) at T0 and 0.58 (95% CI, 0.55-0.62) at T1. When the analysis was performed by cancer subtype defined by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status, highest area under the receiver operating characteristic curve were observed in HR-/HER2+: 0.67 (95% CI, 0.54-0.80) at T0, and 0.63 (95% CI, 0.51-0.76) at T1. Tumor SPH showed promise to quantify MRI MPs and as a biomarker for predicting treatment outcome at pre- or early-treatment time points.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos
20.
NPJ Breast Cancer ; 6(1): 63, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33298938

RESUMEN

Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA