Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurosci ; 42(25): 5085-5101, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35589390

RESUMEN

Endosomal sorting plays a fundamental role in directing neural development. By altering the temporal and spatial distribution of membrane receptors, endosomes regulate signaling pathways that control the differentiation and function of neural cells. Several genes linked to inherited demyelinating peripheral neuropathies, known as Charcot-Marie-Tooth (CMT) disease, encode proteins that directly interact with components of the endosomal sorting complex required for transport (ESCRT). Our previous studies demonstrated that a point mutation in the ESCRT component hepatocyte growth-factor-regulated tyrosine kinase substrate (HGS), an endosomal scaffolding protein that identifies internalized cargo to be sorted by the endosome, causes a peripheral neuropathy in the neurodevelopmentally impaired teetering mice. Here, we constructed a Schwann cell-specific deletion of Hgs to determine the role of endosomal sorting during myelination. Inactivation of HGS in Schwann cells resulted in motor and sensory deficits, slowed nerve conduction velocities, delayed myelination and hypomyelinated axons, all of which occur in demyelinating forms of CMT. Consistent with a delay in Schwann cell maturation, HGS-deficient sciatic nerves displayed increased mRNA levels for several promyelinating genes and decreased mRNA levels for genes that serve as markers of myelinating Schwann cells. Loss of HGS also altered the abundance and activation of the ERBB2/3 receptors, which are essential for Schwann cell development. We therefore hypothesize that HGS plays a critical role in endosomal sorting of the ERBB2/3 receptors during Schwann cell maturation, which further implicates endosomal dysfunction in inherited peripheral neuropathies.SIGNIFICANCE STATEMENT Schwann cells myelinate peripheral axons, and defects in Schwann cell function cause inherited demyelinating peripheral neuropathies known as CMT. Although many CMT-linked mutations are in genes that encode putative endosomal proteins, little is known about the requirements of endosomal sorting during myelination. In this study, we demonstrate that loss of HGS disrupts the endosomal sorting pathway in Schwann cells, resulting in hypomyelination, aberrant myelin sheaths, and impairment of the ERBB2/3 receptor pathway. These findings suggest that defective endosomal trafficking of internalized cell surface receptors may be a common mechanism contributing to demyelinating CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Ratones , Enfermedades del Sistema Nervioso Periférico , ARN Mensajero , Células de Schwann/metabolismo
2.
J Neurochem ; 156(3): 309-323, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32901953

RESUMEN

Strategies for enhancing protein degradation have been proposed for treating neurological diseases associated with a decline in proteasome activity. A proteasomal deubiquitinating enzyme that controls substrate entry into proteasomes, ubiquitin-specific protease 14 (USP14), is an attractive candidate for therapies that modulate proteasome activity. This report tests the validity of genetic and pharmacological tools to study USP14's role in regulating protein abundance. Although previous studies implicated USP14 in the degradation of microtubule associate protein tau, tar DNA binding protein, and prion protein, the levels of these proteins were similar in our neurons cultured from wild type and USP14-deficient mice. Neither loss nor over-expression of USP14 affected the levels of these proteins in mice, implying that modifying the amount of USP14 is not sufficient to alter their steady-state levels. However, neuronal over-expression of a catalytic mutant of USP14 showed that manipulating USP14's ubiquitin-hydrolase activity altered the levels of specific proteins in vivo. Although pharmacological inhibitors of USP14's ubiquitin-hydrolase activity reduced microtubule associate protein tau, tar DNA binding protein, and prion protein in culture, the effect was similar in wild type and USP14-deficient neurons, thus impacting their use for specifically evaluating USP14 in a therapeutic manner. While examining how targeting USP14 may affect other proteins in vivo, this report showed that fatty acid synthase, v-rel reticuloendotheliosis viral oncogene homolog, CTNNB1, and synaptosome associated protein 23 are reduced in USP14-deficient mice; however, loss of USP14 differentially altered the levels of these proteins in the liver and brain. As such, it is critical to more thoroughly examine how inhibiting USP14 alters protein abundance to determine if targeting USP14 will be a beneficial strategy for treating neurodegenerative diseases.


Asunto(s)
Encéfalo/enzimología , Hígado/enzimología , Neuronas/enzimología , Ubiquitina Tiolesterasa/metabolismo , Animales , Femenino , Técnicas Genéticas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
J Neurochem ; 148(3): 386-399, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30451289

RESUMEN

Ubiquitin is an essential signaling protein that controls many different cellular processes. While cellular ubiquitin levels normally cycle between pools of free and conjugated ubiquitin, the balance of these ubiquitin pools can be shifted by exposure to a variety of cellular stresses. Altered ubiquitin pools are also observed in several neurological disorders, suggesting that imbalances in ubiquitin homeostasis may contribute to neuronal dysfunction. To examine the effects of increased ubiquitin levels on the mammalian nervous system, we generated transgenic mice that express ubiquitin under the control of the Thy1.2 promoter. While we did not detect global changes in levels of ubiquitin conjugates in the hippocampus, we found that increasing ubiquitin levels reduced AMPA (GRIA1-4) receptor expression without affecting the levels of NMDA (GRIN) or GABAA receptors. Ubiquitin over-expression also negatively impacted hippocampus-dependent learning and memory as well as baseline excitability and synaptic plasticity at hippocampal CA3-CA1 synapses. These changes occurred in a dose-dependent manner in that mice with the highest levels of ubiquitin over-expression had the greatest deficits in synaptic function and were the most impaired in the learning and memory tasks. As chronic elevation of ubiquitin expression in neurons is sufficient to cause changes in synaptic function and cognition, altered ubiquitin homeostasis may be an important contributor to the stress-induced changes observed in neurological disorders.


Asunto(s)
Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Ubiquitina/metabolismo , Animales , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
4.
PLoS Genet ; 11(6): e1005290, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26115514

RESUMEN

Neurons are particularly vulnerable to perturbations in endo-lysosomal transport, as several neurological disorders are caused by a primary deficit in this pathway. In this report, we used positional cloning to show that the spontaneously occurring neurological mutation teetering (tn) is a single nucleotide substitution in hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). The tn mice exhibit hypokenesis, muscle weakness, reduced muscle size and early perinatal lethality by 5-weeks of age. Although HGS has been suggested to be essential for the sorting of ubiquitinated membrane proteins to the lysosome, there were no alterations in receptor tyrosine kinase levels in the central nervous system, and only a modest decrease in tropomyosin receptor kinase B (TrkB) in the sciatic nerves of the tn mice. Instead, loss of HGS resulted in structural alterations at the neuromuscular junction (NMJ), including swellings and ultra-terminal sprouting at motor axon terminals and an increase in the number of endosomes and multivesicular bodies. These structural changes were accompanied by a reduction in spontaneous and evoked release of acetylcholine, indicating a deficit in neurotransmitter release at the NMJ. These deficits in synaptic transmission were associated with elevated levels of ubiquitinated proteins in the synaptosome fraction. In addition to the deficits in neuronal function, mutation of Hgs resulted in both hypermyelinated and dysmyelinated axons in the tn mice, which supports a growing body of evidence that ESCRTs are required for proper myelination of peripheral nerves. Our results indicate that HGS has multiple roles in the nervous system and demonstrate a previously unanticipated requirement for ESCRTs in the maintenance of synaptic transmission.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Fosfoproteínas/genética , Secuencia de Aminoácidos , Animales , Conducta Animal/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , Hipocampo/patología , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Datos de Secuencia Molecular , Actividad Motora/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/fisiopatología , Fosfoproteínas/metabolismo , Nervio Ciático/metabolismo , Nervio Ciático/fisiopatología , Transmisión Sináptica/genética
5.
Org Biomol Chem ; 15(48): 10172-10183, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29170787

RESUMEN

Nine new polycyclic aromatic BN-1,2-azaborine analogues containing the N-BOH moiety were synthesized using a convenient two-step, one-pot procedure. Characterization of the prepared compounds show the luminescence wavelength and the quantum yields of the azaborines were tunable by controlling the power and location of the donor and acceptor substituents on the chromophore. UV-visible spectroscopy and density functional theory (DFT) computations revealed that the addition of electron-donating moieties to the isoindolinone hemisphere raised the energy of the HOMO, resulting in the reduction of the HOMO-LUMO gap. The addition of an electron-accepting moiety to the isoindolinone hemisphere and an electron-donating group to the boronic acid hemisphere decreased the HOMO-LUMO gap considerably, leading to emission properties from partial intramolecular charge transfer (ICT) states. The combined effect of an acceptor on the isoindolinone side and a donor on the boronic acid side (strong acceptor-π-donor) gave the most red-shifted absorption. The polycyclic aromatic BN-1,2-azaborines emitted strong fluorescence in solution and in the solid-state with the largest red-shifted emission at 640 nm and a Stokes shift of Δλ = 218 nm, or Δν = 8070 cm-1.

6.
J Org Chem ; 81(22): 10955-10963, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27704820

RESUMEN

Six new heteroaromatic polycyclic azaborine chromophores were designed, synthesized, and investigated as easily tunable high-luminescent organic materials. The impact of the nitrogen-boron-hydroxy (N-BOH) unit in the azaborines was investigated by comparison with their N-carbonyl analogs. Insertion of the N-B(OH)-C unit into heteroaromatic polycyclic compounds resulted in strong visible absorption and sharp fluorescence with efficient quantum yields. The solid-state fluorescence of the heteroaromatic polycyclic compounds displayed a large Stokes shift compared to being in solution. The large Stokes shifts observed offset the self-quench effect in the solid state.

7.
Stem Cells ; 30(2): 150-60, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22084016

RESUMEN

Hematopoietic differentiation of embryonic stem cells (ESCs) in vitro has been used as a model to study early hematopoietic development, and it is well documented that hematopoietic differentiation can be enhanced by overexpression of HOXB4. HOXB4 is expressed in hematopoietic progenitor cells (HPCs) where it promotes self-renewal, but it is also expressed in the primitive streak of the gastrulating embryo. This led us to hypothesize that HOXB4 might modulate gene expression in prehematopoietic mesoderm and that this property might contribute to its prohematopoietic effect in differentiating ESCs. To test our hypothesis, we developed a conditionally activated HOXB4 expression system using the mutant estrogen receptor (ER(T2)) and showed that a pulse of HOXB4 prior to HPC emergence in differentiating ESCs led to an increase in hematopoietic differentiation. Expression profiling revealed an increase in the expression of genes associated with paraxial mesoderm that gives rise to the hematopoietic niche. Therefore, we considered that HOXB4 might modulate the formation of the hematopoietic niche as well as the production of hematopoietic cells per se. Cell mixing experiments supported this hypothesis demonstrating that HOXB4 activation can generate a paracrine as well as a cell autonomous effect on hematopoietic differentiation. We provide evidence to demonstrate that this activity is partly mediated by the secreted protein FRZB.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/fisiología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Nicho de Células Madre , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hematopoyesis , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , Comunicación Paracrina , Factores de Transcripción/genética , beta Catenina/metabolismo
8.
J Neurosci ; 31(48): 17505-13, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22131412

RESUMEN

The ubiquitin-proteasome system (UPS) controls protein abundance and is essential for many aspects of neuronal function. In ataxia (ax(J)) mice, profound neurological and synaptic defects result from a loss-of-function mutation in the proteasome-associated deubiquitinating enzyme Usp14, which is required for recycling ubiquitin from proteasomal substrates. Here, we show that transgenic complementation of ax(J) mice with neuronally expressed ubiquitin prevents early postnatal lethality, restores muscle mass, and corrects developmental and functional deficits resulting from the loss of Usp14, demonstrating that ubiquitin deficiency is a major cause of the neurological defects observed in the ax(J) mice. We also show that proteasome components are normally induced during the first 2 weeks of postnatal development, which coincides with dramatic alterations in polyubiquitin chain formation. These data demonstrate a critical role for ubiquitin homeostasis in synaptic development and function, and show that ubiquitin deficiency may contribute to diseases characterized by synaptic dysfunction.


Asunto(s)
Homeostasis/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Sinapsis/fisiología , Ubiquitina/metabolismo , Animales , Fuerza de la Mano/fisiología , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Ubiquitina/genética
9.
J Neurosci ; 29(35): 10909-19, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19726649

RESUMEN

Dysfunction of the ubiquitin proteasome system (UPS) has been implicated in the pathogenesis of many neurological diseases, including Alzheimer's, spinocerebellar ataxia, and several motor neuron diseases. Recent research indicates that changes in synaptic transmission may play a critical role in the progression of neurological disease; however, the mechanisms by which the UPS regulates synaptic structure and function have not been well characterized. In this report, we show that Usp14 is indispensable for synaptic development and function at neuromuscular junctions (NMJs). Usp14-deficient axJ mice display a resting tremor, a reduction in muscle mass, and notable hindlimb rigidity without any detectable loss of motor neurons. Instead, loss of Usp14 causes developmental defects at motor neuron endplates. Presynaptic defects include phosphorylated neurofilament accumulations, nerve terminal sprouting, and poor arborization of the motor nerve terminals, whereas postsynaptic acetylcholine receptors display immature plaque-like morphology. These structural changes in the NMJ correlated with ubiquitin loss in the spinal cord and sciatic nerve. Further studies demonstrated that the greatest loss of ubiquitin was found in synaptosomal fractions, suggesting that the endplate swellings may be caused by decreased protein turnover at the synapse. Transgenic restoration of Usp14 in the nervous system corrected the levels of monomeric ubiquitin in the motor neuron circuit and the defects that were observed in the motor endplates and muscles of the axJ mice. These data define a critical role for Usp14 at mammalian synapses and suggest a requirement for local ubiquitin recycling by the proteasome to control the development and function of NMJs.


Asunto(s)
Unión Neuromuscular/enzimología , Unión Neuromuscular/crecimiento & desarrollo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sinapsis/enzimología , Ubiquitina Tiolesterasa/fisiología , Ubiquitina/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Unión Neuromuscular/metabolismo , Ubiquitina Tiolesterasa/deficiencia
10.
J Neurosci ; 26(44): 11423-31, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17079671

RESUMEN

The ataxia mutation (axJ) is a recessive neurological mutation that results in reduced growth, ataxia, and hindlimb muscle wasting in mice. The axJ gene encodes ubiquitin-specific protease 14 (Usp14), a deubiquitinating enzyme (DUB) that associates with the proteasome via its ubiquitin-like (Ubl) domain and is involved in processing ubiquitin chains. Analysis of Usp14 gene products demonstrated that Usp14 undergoes alternative pre-mRNA splicing to produce a full-length form of Usp14 that is capable of binding proteasomes and a form that contains a deletion in the Ubl domain. The full-length form of Usp14 is the only form that appears to be reduced in the axJ mice. Transgenic rescue of the axJ mice with neuronal-specific expression of Usp14 demonstrated that the full-length form of Usp14 was sufficient to restore viability and motor system function to the axJ mice. Biochemical analysis showed that the ubiquitin hydrolyase activity of this form of Usp14 is dependent on the presence of proteasomes, and neuronal expression of full-length Usp14 was able to restore the levels of monomeric ubiquitin in the brains of axJ mice. However, the axJ-rescued mice still displayed the Purkinje cell axonal swellings that are seen in the axJ mice, indicating that this cerebellar alteration is not the primary cause of the axJ movement disorders. These results show that the motor defects observed in the axJ mice are attributable to a neuropathic disease rather than to a muscular disorder and suggest that changes in proteasomal function may contribute to neurological dysfunction in the axJ mice.


Asunto(s)
Ataxia/enzimología , Ataxia/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Neuronas/enzimología , Ubiquitina Tiolesterasa/biosíntesis , Ubiquitina/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Ratas , Ubiquitina Tiolesterasa/genética
11.
Front Mol Neurosci ; 8: 11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25954152

RESUMEN

Ubiquitin-specific protease 14 (USP14) is a major deubiquitinating enzyme and a key determinant of neuromuscular junction (NMJ) structure and function. We have previously reported dramatic ubiquitin depletion in the nervous systems of the USP14-deficient ataxia (ax (J) ) mice and demonstrated that transgenic ubiquitin overexpression partially rescues the ax (J) neuromuscular phenotype. However, later work has shown that ubiquitin overexpression does not correct the ax (J) deficits in hippocampal short term plasticity, and that transgenic expression of a catalytically inactive form of USP14 in the nervous system mimics the neuromuscular phenotype observed in the ax (J) mice, but causes a only a modest reduction of free ubiquitin. Instead, increased ubiquitin conjugates and aberrant activation of pJNK are observed in the nervous systems of the USP14 catalytic mutant mice. In this report, we demonstrate that restoring free ubiquitin levels in the USP14 catalytic mutant mice improved NMJ structure and reduced pJNK accumulation in motor neuron terminals, but had a negative impact on measures of NMJ function, such as motor performance and muscle development. Transgenic expression of ubiquitin had a dose-dependent effect on NMJ function in wild type mice: moderate levels of overexpression improved NMJ function while more robust ubiquitin overexpression reduced muscle development and motor coordination. Combined, these results suggest that maintenance of free ubiquitin levels by USP14 contributes to NMJ structure, but that USP14 regulates NMJ function through a separate pathway.

12.
Mol Neurodegener ; 10: 3, 2015 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-25575639

RESUMEN

BACKGROUND: Ubiquitin-specific protease 14 (USP14) is one of three proteasome-associated deubiquitinating enzymes that remove ubiquitin from proteasomal substrates prior to their degradation. In vitro evidence suggests that inhibiting USP14's catalytic activity alters the turnover of ubiquitinated proteins by the proteasome, although whether protein degradation is accelerated or delayed seems to be cell-type and substrate specific. For example, combined inhibition of USP14 and the proteasomal deubiquitinating enzyme UCH37 halts protein degradation and promotes apoptosis in multiple myeloma cells, whereas USP14 inhibition alone accelerates the degradation of aggregate-prone proteins in immortalized cell lines. These findings have prompted interest in USP14 as a therapeutic target both inside and outside of the nervous system. However, loss of USP14 in the spontaneously occurring ataxia mouse mutant leads to a dramatic neuromuscular phenotype and early perinatal lethality, suggesting that USP14 inhibition may have adverse consequences in the nervous system. We therefore expressed a catalytically inactive USP14 mutant in the mouse nervous system to determine whether USP14's catalytic activity is required for neuromuscular junction (NMJ) structure and function. RESULTS: Mice expressing catalytically inactive USP14 in the nervous system exhibited motor deficits, altered NMJ structure, and synaptic transmission deficits that were similar to what is observed in the USP14-deficient ataxia mice. Acute pharmacological inhibition of USP14 in wild type mice also reduced NMJ synaptic transmission. However, there was no evidence of altered proteasome activity when USP14 was inhibited either genetically or pharmacologically. Instead, these manipulations increased the levels of non-proteasome targeting ubiquitin conjugates. Specifically, we observed enhanced proteasome-independent ubiquitination of mixed lineage kinase 3 (MLK3). Consistent with the direct activation of MLK3 by ubiquitination, we also observed increased activation of its downstrea targets MAP kinase kinase 4 (MKK4) and c-Jun N-terminal kinase (JNK). In vivo inhibition of JNK improved motor function and synapse structure in the USP14 catalytic mutant mice. CONCLUSIONS: USP14's catalytic activity is required for nervous system structure and function and has an ongoing role in NMJ synaptic transmission. By regulating the ubiquitination status of protein kinases, USP14 can coordinate the activity of intracellular signaling pathways that control the development and activity of the NMJ.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Proteínas del Tejido Nervioso/fisiología , Unión Neuromuscular/fisiopatología , Transducción de Señal/fisiología , Ubiquitina Tiolesterasa/fisiología , Animales , Antracenos/farmacología , Ataxia/genética , Ataxia/patología , Ataxia/fisiopatología , Catálisis , Células Cultivadas , Corteza Cerebral/citología , Conducta Exploratoria , Femenino , Fuerza de la Mano , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/ultraestructura , Neuronas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal , Procesamiento Proteico-Postraduccional , Proteolisis , Pirroles/farmacología , Pirrolidinas/farmacología , Prueba de Desempeño de Rotación con Aceleración Constante , Transducción de Señal/genética , Transgenes , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/genética , Ubiquitinación
13.
PLoS One ; 8(12): e84042, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358326

RESUMEN

In this study, we identified and characterized an N-ethyl-N-nitrosourea (ENU) induced mutation in Usp14 (nmf375) that leads to adult-onset neurological disease. The nmf375 mutation causes aberrant splicing of Usp14 mRNA, resulting in a 95% reduction in USP14. We previously showed that loss of USP14 in ataxia (ax (J)) mice results in reduced ubiquitin levels, motor endplate disease, Purkinje cell axonal dystrophy and decreased hippocampal paired pulse facilitation (PPF) during the first 4-6 weeks of life, and early postnatal lethality by two months of age. Although the loss of USP14 is comparable between the nmf375 and ax (J) mice, the nmf375 mice did not exhibit these ax (J) developmental abnormalities. However, by 12 weeks of age the nmf375 mutants present with ubiquitin depletion and motor endplate disease, indicating a continual role for USP14-mediated regulation of ubiquitin pools and neuromuscular junction (NMJ) structure in adult mice. The observation that motor endplate disease was only seen after ubiquitin depletion suggests that the preservation of NMJ structure requires the stable maintenance of synaptic ubiquitin pools. Differences in genetic background were shown to affect ubiquitin expression and dramatically alter the phenotypes caused by USP14 deficiency.


Asunto(s)
Enfermedades Neuromusculares/enzimología , Enfermedades Neuromusculares/genética , Ubiquitina Tiolesterasa/deficiencia , Empalme Alternativo , Animales , Axones/patología , Secuencia de Bases , Mapeo Cromosómico , Modelos Animales de Enfermedad , Expresión Génica , Hipocampo/metabolismo , Homeostasis/genética , Humanos , Ratones , Placa Motora/metabolismo , Placa Motora/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mutación , Enfermedades Neuromusculares/mortalidad , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Plasticidad Neuronal , Fenotipo , Subunidades de Proteína/genética , Células de Purkinje/citología , Células de Purkinje/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , Receptores Colinérgicos/química , Receptores Colinérgicos/genética , Índice de Severidad de la Enfermedad , Sinapsis/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética
14.
PLoS One ; 7(10): e47884, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144711

RESUMEN

Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3. Using Usp14-deficient ax(J) mice, we investigated if loss of Usp14 results in decreased levels of endogenous tau and ataxin-3 in the nervous system of mice. Although loss of Usp14 did not alter the overall neuronal levels of tau and ataxin-3, we found increased levels of phosphorylated tau that correlated with the onset of axonal varicosities in the Usp14-deficient mice. These changes in tau phosphorylation were accompanied by increased levels of activated phospho-Akt, phosphorylated MAPKs, and inactivated phospho-GSK3ß. However, genetic ablation of tau did not alter any of the neurological deficits in the Usp14-deficient mice, demonstrating that increased levels of phosphorylated tau do not necessarily lead to neurological disease. Due to the widespread activation of intracellular signaling pathways induced by the loss of Usp14, a better understanding of the cellular pathways regulated by the proteasome is required before effective proteasomal-based therapies can be used to treat chronic neurological diseases.


Asunto(s)
Neuronas/metabolismo , Tauopatías/metabolismo , Ubiquitina Tiolesterasa/deficiencia , Proteínas tau/metabolismo , Animales , Ataxina-3 , Encéfalo/metabolismo , Encéfalo/patología , Cerebelo/metabolismo , Cerebelo/patología , Cerebelo/ultraestructura , Potenciales Postsinápticos Excitadores , Técnica del Anticuerpo Fluorescente Indirecta , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patología , Análisis de Supervivencia , Tauopatías/genética , Tauopatías/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina Tiolesterasa/genética , Proteínas tau/genética
15.
J Neurochem ; 95(3): 724-31, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16190881

RESUMEN

The ataxia (ax(J)) mutation is a spontaneous recessive mutation that results in reduced expression of ubiquitin-specific protease 14, Usp14. Mice homozygous for the ax(J) mutation are retarded for growth and exhibit several behavioral disorders, including a resting tremor and hindlimb paralysis. Although pathological defects appear to be limited to the central nervous system, reduction of Usp14 expression was widespread in the ax(J) mice. Usp14 co-fractionated with proteasomes isolated from livers and brains of wild-type mice. Proteasomes isolated from the ax(J) brains still possessed deubiquitinating activity and were functionally competent to hydrolyze 20S proteasomal substrates in vitro. However, the levels of monomeric ubiquitin were reduced approximately 35% in most of the ax(J) tissues examined. These results indicate that Usp14 functions to maintain the cellular levels of monomeric ubiquitin in mammalian cells, and that alterations in the levels of ubiquitin may contribute to neurological disease.


Asunto(s)
Ataxia/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Animales , Ataxia/patología , Ataxia/fisiopatología , Peso Corporal , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Neuronas/enzimología , Neuronas/patología , Tamaño de los Órganos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
16.
Microbiology (Reading) ; 144 ( Pt 7): 1823-1833, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9695915

RESUMEN

The authors previously showed that the SpvR-regulated spvABCD operon of the Salmonella typhimurium virulence plasmid is highly induced during exponential-phase growth by salmonellae intracellularly in mammalian cells and in a medium designed to mimic the intracellular environment of mammalian cells, intracellular salts medium (ISM), as well as at stationary phase in L broth (LB). The most relevant signal(s) for spv gene expression in vivo is not known. To elucidate the means by which salmonellae regulate the spv genes in response to the environment during the disease process, expression of the spvR gene, encoding the positive regulatory protein SpvR, was examined under these same growth conditions by using RNAse-protection analysis. spvR was expressed at a low, basal level during exponential growth in LB but was induced during exponential growth in ISM and during stationary phase in LB, the same conditions that increased expression of the spvABCD operon. Basal expression of spvR during exponential growth in LB was independent of both SpvR and the alternative sigma factor RpoS, whereas maximal induction of spvR was dependent on both SpvR and RpoS. In an RpoS- background, spvR message was decreased in stationary phase, whereas spvR exhibited residual RpoS-independent induction during exponential growth in ISM. Deletion of spvA from the virulence plasmid of S. typhimurium increased expression of spvR during stationary phase in LB, but not during exponential growth in ISM. These results suggest that expression of spvR is controlled by different regulatory factors, depending on the growth conditions encountered by the salmonellae.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Genes Reguladores , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/genética , Clonación Molecular , Eliminación de Gen , Mutación , Plásmidos/genética , Salmonella typhimurium/patogenicidad , Factor sigma/análisis , Factores de Transcripción/análisis , Virulencia/genética
17.
Microbiology (Reading) ; 143 ( Pt 12): 3827-3839, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9421907

RESUMEN

The spv genes of Salmonella typhimurium and other non-typhoidal Salmonella serovars are essential for efficient systemic infection beyond the intestines in orally inoculated mice as a model for enteric fever. These virulence genes are not significantly expressed by salmonellae during exponential growth in L broth but are induced when the bacteria enter the stationary phase of growth. Using RNase protection analysis to directly measure spvA mRNA from the virulence plasmid of S. typhimurium, we found that spvA was maximally induced in an SpvR- and RpoS-dependent manner during exponential growth in intracellular Salts Medium, which mimics the intracellular environment of mammalian cells. A cloned spvA-lacZ operon fusion in S. typhimurium was induced intracellularly in periotoneal cells of mice, correlating in vivo intracellular gene expression with intracellular function of the spv genes in infected mice. spvA was also induced intracellularly in vitro within both Henle-407 intestinal epithelial cells and J774.A1 macrophage-like cells when the bacteria were replicating with exponential kinetics. Prevention of invasion of salmonellae with cytochalasin D inhibited spvA induction within tissue culture cells, indicating that salmonellae must be internalized for spvA to be induced. The spvA-lacZ fusion was not induced by salmonellae in extracellular fluid of the peritoneal cavity or in serum. Since induction of the spv genes occurs intracellularly during exponential growth of salmonellae, cessation of growth may not be the most relevant inducing signal for spv gene expression.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Plásmidos , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Transcripción Genética , Animales , Secuencia de Bases , Línea Celular , Genes Bacterianos , Humanos , Mucosa Intestinal , Mamíferos , Ratones , Operón , ARN Mensajero/biosíntesis , Ratas , Proteínas Recombinantes de Fusión/biosíntesis , Mapeo Restrictivo , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Transfección , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA