Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochem J ; 411(2): e9-10, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18363552

RESUMEN

How can a constitutively active 'master' kinase with numerous downstream targets preferentially phosphorylate one or more of these without influencing all simultaneously? How might such a system be switched off? The characterization of the role of deubiquitination in regulating the phosphorylation and activation of AMPK (AMP-activated protein kinase)-related kinases by LKB1 suggests a novel and interesting mechanism for conferring signal transduction specificity and control at the kinase substrate level. In this issue of the Biochemical Journal, Al-Hakim et al. show that the AMPK-related kinases NUAK1 (AMPK-related kinase 5) and MARK4 (microtubule-affinity-regulating kinase 4) are polyubiquitinated in vivo and that they serve as substrates of the deubiquitinating enzyme USP9X; furthermore, the first evidence is provided for regulation of AMPK-related kinase family members mediated via unusual Lys(29)/Lys(33) polyubiquitin chains, rather than the more common Lys(48)/Lys(63) linkages.


Asunto(s)
Complejos Multienzimáticos/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitinación , Proteínas Quinasas Activadas por AMP , Humanos , Fosforilación , Sensibilidad y Especificidad
2.
Cell Biochem Biophys ; 47(3): 332-47, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17652779

RESUMEN

AMP-activated protein kinase (AMPK) is an energy sensing/signaling protein that, when activated, increases ATP production by stimulating glucose uptake and fatty acid oxidation while at the same time inhibiting ATP = consuming processes such as protein synthesis. Chronic activation of AMPK inhibits expression of lipogenic enzymes in the liver and enhances expression of mitochondrial oxidative enzymes in skeletal muscle. Deficiency of muscle LKB1, the upstream kinase of AMPK, results in greater fluctuation in energy charge during muscle contraction and decreased capacity for exercise at higher work rates. Because AMPK enhances both glucose uptake and fatty acid oxidation in skeletal muscle, it has become a target for prevention and treatment of type 2 diabetes and obesity.


Asunto(s)
Adenosina Monofosfato/metabolismo , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Transferencia de Energía/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Modelos Biológicos , Activación Enzimática , Retroalimentación/fisiología , Tasa de Depuración Metabólica
3.
Med Sci Sports Exerc ; 38(11): 1945-9, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17095928

RESUMEN

What are the molecular signals induced by muscle contraction that result in an increase in GLUT4, hexokinase 2, mitochondrial oxidative enzymes, and other adaptations to endurance exercise training? Could repetitive activation of AMP-activated protein kinase (AMPK) be responsible in part? There is substantial evidence for a role of AMPK in inducing adaptations to endurance training: 1) AMPK is activated in response to muscle contraction; 2) chronic chemical activation of AMPK results in increases in GLUT4, hexokinase 2, UCP-3, and citric acid cycle enzymes; 3) muscle contraction and chemical activation of AMPK both result in increases in PGC-1alpha, a transcriptional coactivator involved in stimulation of mitochondrial biogenesis; and 4) increases in muscle PGC-1 alpha, delta-aminolevulinic acid synthetase, and mitochondrial DNA induced by chronic creatine phosphate depletion in wild-type mice are not observed in dominant-negative AMPK mice. These observations lend credence to the hypothesis that AMPK activation induced by muscle contraction is responsible in part for adaptations to endurance exercise training.


Asunto(s)
Adaptación Fisiológica , Adenilato Quinasa/metabolismo , Ejercicio Físico/fisiología , Resistencia Física/fisiología , Transducción de Señal/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Humanos , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
J Appl Physiol (1985) ; 111(6): 1622-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21903876

RESUMEN

In liver, the AMP-activated protein kinase kinase (AMPKK) complex was identified as the association of liver kinase B1 (LKB1), mouse protein 25 (MO25α/ß), and Ste-20-related adaptor protein (STRADα/ß); however, this complex has yet to be characterized in skeletal muscle. We demonstrate the expression of the LKB1-MO25-STRAD complex in skeletal muscle, confirm the absence of mRNA splice variants, and report the relative mRNA expression levels of these proteins in control and muscle-specific LKB1 knockout (LKB1(-/-)) mouse muscle. LKB1 detection in untreated control and LKB1(-/-) muscle lysates revealed two protein bands (50 and 60 kDa), although only the heavier band was diminished in LKB1(-/-) samples [55 ± 2.5 and 13 ± 1.5 arbitrary units (AU) in control and LKB1(-/-), respectively, P < 0.01], suggesting that LKB1 is not represented at 50 kDa, as previously cited. The 60-kDa LKB1 band was further confirmed following purification using polyethylene glycol (43 ± 5 and 8.4 ± 4 AU in control and LKB1(-/-), respectively, P < 0.01) and ion-exchange fast protein liquid chromatography. Mass spectrometry confirmed LKB1 protein detection in the 60-kDa protein band, while none was detected in the 50-kDa band. Coimmunoprecipitation assays demonstrated LKB1-MO25-STRAD complex formation. Quantitative PCR revealed significantly reduced LKB1, MO25α, and STRADß mRNA in LKB1(-/-) muscle. These findings demonstrate that the LKB1-MO25-STRAD complex is the principal AMPKK in skeletal muscle.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Peso Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Tisular
5.
J Appl Physiol (1985) ; 108(2): 298-305, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19959768

RESUMEN

Cushing's syndrome is characterized by marked central obesity and insulin insensitivity, effects opposite those seen with chronic AMP-activated protein kinase (AMPK) activation. This study was designed to determine whether chronic exposure to excess glucocorticoids influences LKB1/AMPK signaling in skeletal muscle. Corticosterone pellets were implanted subcutaneously in rats (hypercorticosteronemia, Hypercort) for 2 wk. Controls were sham operated and fed ad libitum or were sham operated and food restricted (pair-weighted group, Pair) to produce body weights similar to Hypercort rats. At the end of the 2-wk treatment period, rats were anesthetized, and the right gastrocnemius-plantaris (gastroc) and soleus muscles were removed. Left muscles were removed after electrical stimulation for 5 min. No significant differences were noted between treatment groups in ATP, creatine phosphate, or LKB1 activity. The alpha- and beta-subunit isoforms were not significantly influenced in gastroc by corticosterone treatment. Expression of the gamma3-subunit decreased, and gamma1- and gamma2-subunit expression increased. Both alpha2-AMPK and alpha1-AMPK activities were increased in the gastroc in response to electrical stimulation, but the magnitude of the increase was less for alpha2 in the Hypercort rats. Despite elevated plasma insulin and elevated plasma leptin in the Hypercort rats, phosphorylation of TBC1D1 was lower in both resting and stimulated muscle compared with controls. Malonyl-CoA content was elevated in gastroc muscles of resting Hypercort rats. These changes in response to excess glucocorticoids could be responsible, in part, for the decrease in insulin sensitivity and adiposity seen in Cushing's syndrome.


Asunto(s)
Corticosterona/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Proteínas Serina-Treonina Quinasas/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Glándulas Suprarrenales/patología , Animales , Atrofia , Western Blotting , Peso Corporal/efectos de los fármacos , Corticosterona/toxicidad , Estimulación Eléctrica , Inmunoprecipitación , Insulina/sangre , Resistencia a la Insulina , Isoenzimas/biosíntesis , Isoenzimas/genética , Leptina/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/patología , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
6.
J Appl Physiol (1985) ; 109(2): 511-20, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20522731

RESUMEN

Factors that stimulate mitochondrial biogenesis in skeletal muscle include AMP-activated protein kinase (AMPK), calcium, and circulating free fatty acids (FFAs). Chronic treatment with either 5-aminoimidazole-4-carboxamide riboside (AICAR), a chemical activator of AMPK, or increasing circulating FFAs with a high-fat diet increases mitochondria in rat skeletal muscle. The purpose of this study was to determine whether the combination of chronic chemical activation of AMPK and high-fat feeding would have an additive effect on skeletal muscle mitochondria levels. We treated Wistar male rats with a high-fat diet (HF), AICAR injections (AICAR), or a high-fat diet and AICAR injections (HF + AICAR) for 6 wk. At the end of the treatment period, markers of mitochondrial content were examined in white quadriceps, red quadriceps, and soleus muscles, predominantly composed of unique muscle-fiber types. In white quadriceps, there was a cumulative effect of treatments on long-chain acyl-CoA dehydrogenase, cytochrome c, and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein, as well as on citrate synthase and beta-hydroxyacyl-CoA dehydrogenase (beta-HAD) activity. In contrast, no additive effect was noted in the soleus, and in the red quadriceps only beta-HAD activity increased additively. The additive increase of mitochondrial markers observed in the white quadriceps may be explained by a combined effect of two separate mechanisms: high-fat diet-induced posttranscriptional increase in PGC-1alpha protein and AMPK-mediated increase in PGC-1alpha protein via a transcriptional mechanism. These data show that chronic chemical activation of AMPK and a high-fat diet have a muscle type specific additive effect on markers of fatty acid oxidation, the citric acid cycle, the electron transport chain, and transcriptional regulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Grasas de la Dieta/metabolismo , Activadores de Enzimas/farmacología , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Ribonucleótidos/farmacología , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Aminoimidazol Carboxamida/farmacología , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocromos c/metabolismo , Transporte de Electrón , Activación Enzimática , Ácidos Grasos no Esterificados/metabolismo , Masculino , Mitocondrias Musculares/enzimología , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/enzimología , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/enzimología , Músculo Esquelético/enzimología , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Músculo Cuádriceps/efectos de los fármacos , Músculo Cuádriceps/enzimología , Ratas , Ratas Wistar , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
7.
J Appl Physiol (1985) ; 108(6): 1775-85, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20360428

RESUMEN

Liver kinase B1 (LKB1) is a tumor-suppressing protein that is involved in the regulation of muscle metabolism and growth by phosphorylating and activating AMP-activated protein kinase (AMPK) family members. Here we report the development of a myopathic phenotype in skeletal and cardiac muscle-specific LKB1 knockout (mLKB1-KO) mice. The myopathic phenotype becomes overtly apparent at 30-50 wk of age and is characterized by decreased body weight and a proportional reduction in fast-twitch skeletal muscle weight. The ability to ambulate is compromised with an often complete loss of hindlimb function. Skeletal muscle atrophy is associated with a 50-75% reduction in mammalian target of rapamycin pathway phosphorylation, as well as lower peroxisome proliferator-activated receptor-alpha coactivator-1 content and cAMP response element binding protein phosphorylation (43 and 40% lower in mLKB1-KO mice, respectively). Maximum in situ specific force production is not affected, but fatigue is exaggerated, and relaxation kinetics are slowed in the myopathic mice. The increased fatigue is associated with a 30-78% decrease in mitochondrial protein content, a shift away from type IIA/D toward type IIB muscle fibers, and a tendency (P=0.07) for decreased capillarity in mLKB1-KO muscles. Hearts from myopathic mLKB1-KO mice exhibit grossly dilated atria, suggesting cardiac insufficiency and heart failure, which likely contributes to the phenotype. These findings indicate that LKB1 plays a critical role in the maintenance of both skeletal and cardiac function.


Asunto(s)
Fatiga Muscular , Músculo Esquelético/fisiopatología , Enfermedades Musculares/fisiopatología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
8.
Am J Physiol Endocrinol Metab ; 290(4): E661-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16278246

RESUMEN

Muscle contraction results in phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an AMPK kinase (AMPKK). LKB1/STRAD/MO25 (LKB1) is the major AMPKK in skeletal muscle; however, the activity of LKB1 is not increased by muscle contraction. This finding suggests that phosphorylation of AMPK by LKB1 is regulated by allosteric mechanisms. Creatine phosphate is depleted during skeletal muscle contraction to replenish ATP. Thus the concentration of creatine phosphate is an indicator of cellular energy status. A previous report found that creatine phosphate inhibits AMPK activity. The purpose of this study was to determine whether creatine phosphate would inhibit 1) phosphorylation of AMPK by LKB1 and 2) AMPK activity after phosphorylation by LKB1. We found that creatine phosphate did not inhibit phosphorylation of either recombinant or purified rat liver AMPK by LKB1. We also found that creatine phosphate did not inhibit 1) active recombinant alpha1beta1gamma1 or alpha2beta2gamma2 AMPK, 2) AMPK immunoprecipitated from rat liver extracts by either the alpha1 or alpha2 subunit, or 3) AMPK chromatographically purified from rat liver. Inhibition of skeletal muscle AMPK by creatine phosphate was greatly reduced or eliminated with increased AMPK purity. In conclusion, these results suggest that creatine phosphate is not a direct regulator of LKB1 or AMPK activity. Creatine phosphate may indirectly modulate AMPK activity by replenishing ATP at the onset of muscle contraction.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Fosfocreatina/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Activación Enzimática , Glucosa-6-Fosfato/farmacología , Técnicas In Vitro , Masculino , Complejos Multienzimáticos/antagonistas & inhibidores , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Acetato de Sodio/farmacología , Cloruro de Sodio/farmacología
9.
Am J Physiol Endocrinol Metab ; 289(6): E1071-6, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16105857

RESUMEN

As the primary glucose transporter in skeletal muscle, GLUT4 is an important factor in the regulation of blood glucose. We previously reported that stimulation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) increased GLUT4 expression in muscle. GLUT4 enhancer factor (GEF) and myocyte enhancer factor 2 (MEF2) have been shown to be important for normal GLUT4 expression because deletion or truncation of the consensus sequences on the promoter causes depressed GLUT4 mRNA expression. This led to the current study to investigate possible roles for GEF and MEF2 in mediating the activation of GLUT4 gene transcription in response to AMPK. Here we show that, although AMPK does not appear to phosphorylate MEF2A, AMPK directly phosphorylates the GEF protein in vitro. MEF2 and GEF are activated in response to AMPK as we observed translocation of both to the nucleus after AICAR treatment. Nuclear MEF2 protein content was increased after 2 h, and GEF protein was increased in the nucleus 1 and 2 h post-AICAR treatment. Last, GEF and MEF2 increase in binding to the GLUT4 promoter within 2 h after AICAR treatment. Thus we conclude that GEF and MEF2 mediate the AMPK-induced increase in transcription of skeletal muscle GLUT4. AMPK can phosphorylate GEF and in response to AICAR, GEF, and MEF2 translocate to the nucleus and have increased binding to the GLUT4 promoter.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4/genética , Complejos Multienzimáticos/metabolismo , Factores Reguladores Miogénicos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/genética , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Núcleo Celular/química , Núcleo Celular/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/fisiología , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Factores de Transcripción MEF2 , Músculo Esquelético/química , Músculo Esquelético/ultraestructura , Factores Reguladores Miogénicos/análisis , Factores Reguladores Miogénicos/fisiología , Fosforilación , Regiones Promotoras Genéticas/genética , ARN Mensajero/análisis , Ratas , Proteínas Recombinantes/metabolismo , Ribonucleótidos/farmacología , Factores de Transcripción/análisis , Factores de Transcripción/fisiología
10.
Am J Physiol Endocrinol Metab ; 289(4): E710-5, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15928023

RESUMEN

This study was designed to examine activity of AMP-activated protein kinase kinase (AMPKK) in muscles from nontrained and endurance-trained rats. Rats were trained 5 days/wk, 2 h/day for 8 wk at a final intensity of 32 m/min up a 15% grade with 30-s sprints at 53 m/min every 10 min. Gastrocnemius muscles were stimulated in situ in trained and nontrained rats for 5 min at frequencies of 0.4/s and 1/s. Gastrocnemius LKB1 protein, a putative component of the AMPKK complex (LKB1, STRAD, and MO25), increased approximately twofold in response to training. Phosphorylation of AMP-activated protein kinase (AMPK) determined by Western blot and AMPK activity of immunoprecipitates (both isoforms) was increased at both stimulation rates in both trained and nontrained muscles. AMPKK activity was 73% lower in resuspended polyethylene glycol precipitates of muscle extracts from the trained compared with nontrained rats. AMPKK activity did not increase in either trained or nontrained muscle in response to electrical stimulation, even though phospho-AMPK did increase. These results suggest that AMPKK is activated during electrical stimulation of both trained and nontrained muscle by mechanisms other than covalent modification.


Asunto(s)
Contracción Isométrica/fisiología , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/métodos , Resistencia Física/fisiología , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Estimulación Eléctrica , Activación Enzimática , Masculino , Músculo Esquelético/inervación , Fosforilación , Ratas , Ratas Sprague-Dawley , Descanso/fisiología
11.
Am J Physiol Endocrinol Metab ; 289(6): E960-8, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16014350

RESUMEN

Recent research suggests that LKB1 is the major AMP-activated protein kinase kinase (AMPKK). Peroxisome-proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) is a master coordinator of mitochondrial biogenesis. Previously we reported that skeletal muscle LKB1 protein increases with endurance training. The purpose of this study was to determine whether training-induced increases in skeletal muscle LKB1 and PGC-1alpha protein exhibit a time course and intensity-dependent response similar to that of citrate synthase. Male Sprague-Dawley rats completed endurance- and interval-training protocols. For endurance training, rats trained for 4, 11, 25, or 53 days. Interval-training rats trained identically to endurance-trained rats, except that after 25 days interval training was combined with endurance training. Time course data were collected from endurance-trained red quadriceps (RQ) after each time point. Interval training data were collected from soleus, RQ, and white quadriceps (WQ) muscle after 53 days only. Mouse protein 25 (MO25) and PGC-1alpha protein increased significantly after 4 days. Increased citrate synthase activity, increased LKB1 protein, and decreased AMPKK activity were found after 11 days. Maximal increases occurred after 4 days for hexokinase II, 25 days for MO25, and 53 days for citrate synthase, LKB1, and PGC-1alpha. In WQ, but not RQ or soleus, interval training had an additive effect to endurance training and induced significant increases in all proteins measured. These results demonstrate that LKB1 and PGC-1alpha protein abundances increase with endurance and interval training similarly to citrate synthase. The increase in LKB1 and PGC-1alpha with endurance and interval training may function to maintain the training-induced increases in mitochondrial mass.


Asunto(s)
Músculo Esquelético/química , Resistencia Física/fisiología , Proteínas Serina-Treonina Quinasas/análisis , Proteínas de Unión al ARN/análisis , Factores de Transcripción/análisis , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Adaptadoras Transductoras de Señales/análisis , Animales , Proteínas de Unión al Calcio , Citrato (si)-Sintasa/análisis , Hexoquinasa/análisis , Masculino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal/fisiología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
12.
Am J Physiol Endocrinol Metab ; 283(1): E178-86, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12067859

RESUMEN

The effects of endurance training on the response of muscle AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) to moderate treadmill exercise were examined. In red quadriceps, there was a large activation of alpha 2-AMPK and inactivation of ACC in response to exercise. This response was greatly reduced after training, probably because of reduced metabolic stress. In white quadriceps, there were no effects of exercise on AMPK or ACC, but alpha 2-activity was higher after training because of increased phosphorylation of Thr(172). In soleus, there were small increases in alpha 2-activity during exercise that were not affected by training. The expression of all seven AMPK subunit isoforms was also examined. The beta 2- and gamma 2-isoforms were most highly expressed in white quadriceps, and gamma 3 was expressed in red quadriceps and soleus. There was a threefold increase in expression of gamma 3 after training in red quadriceps only. Our results suggest that gamma 3 might have a special role in the adaptation to endurance exercise in muscles utilizing oxidative metabolism.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Músculo Esquelético/enzimología , Esfuerzo Físico/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Western Blotting , Activación Enzimática/fisiología , Glucógeno/metabolismo , Isoenzimas/metabolismo , Masculino , Actividad Motora , Fibras Musculares de Contracción Rápida/enzimología , Músculo Esquelético/citología , Pruebas de Precipitina , Proteínas Quinasas/metabolismo , Subunidades de Proteína , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA