Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(1): 355-365, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37807718

RESUMEN

Foreign proteins are produced by introducing synthetic constructs into host bacteria for biotechnology applications. This process can cause resource competition between synthetic circuits and host cells, placing a metabolic burden on the host cells which may result in load stress and detrimental physiological changes. Consequently, the host bacteria can experience slow growth, and the synthetic system may suffer from suboptimal function. To help in the detection of bacterial load stress, we developed machine-learning strategies to select a minimal number of genes that could serve as biomarkers for the design of load stress reporters. We identified pairs of biomarkers that showed discriminative capacity to detect the load stress states induced in 41 engineered Escherichia coli strains.


Asunto(s)
Biotecnología , Escherichia coli , Escherichia coli/metabolismo , Bacterias
2.
Analyst ; 149(5): 1527-1536, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38265775

RESUMEN

Five carbapenemase enzymes, coined the 'big five', have been identified as the biggest threat to worldwide antibiotic resistance based on their broad substrate affinity and global prevalence. Here we show the development of a molecular detection method for the gene sequences from the five carbapenemases utilising the isothermal amplification method of recombinase polymerase amplification (RPA). We demonstrate the successful detection of each of the big five carbapenemase genes with femtomolar detection limits using a spatially separated multiplex amplification strategy. The approach uses tailed oligonucleotides for hybridisation, reducing the complexity and cost of the assay compared to classical RPA detection strategies. The reporter probe, horseradish peroxidase, generates the measureable output on a benchtop microplate reader, but more notably, our study leverages the power of a portable Raman spectrometer, enabling up to a 19-fold enhancement in the limit of detection. Significantly, the development approach employed a solid-phase RPA format, wherein the forward primers targeting each of the five carbapenemase genes are immobilised to a streptavidin-coated microplate. The adoption of this solid-phase methodology is pivotal for achieving a successful developmental pathway when employing this streamlined approach. The assay takes 2 hours until result, including a 40 minutes RPA amplification step at 37 °C. This is the first example of using solid-phase RPA for the detection of the big five and represents a milestone towards the developments of an automated point-of-care diagnostic for the big five using RPA.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Recombinasas/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Sensibilidad y Especificidad
3.
PLoS Biol ; 18(11): e3000885, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33170835

RESUMEN

Hypertension is the most important cause of death and disability in the elderly. In 9 out of 10 cases, the molecular cause, however, is unknown. One mechanistic hypothesis involves impaired endothelium-dependent vasodilation through reactive oxygen species (ROS) formation. Indeed, ROS forming NADPH oxidase (Nox) genes associate with hypertension, yet target validation has been negative. We re-investigate this association by molecular network analysis and identify NOX5, not present in rodents, as a sole neighbor to human vasodilatory endothelial nitric oxide (NO) signaling. In hypertensive patients, endothelial microparticles indeed contained higher levels of NOX5-but not NOX1, NOX2, or NOX4-with a bimodal distribution correlating with disease severity. Mechanistically, mice expressing human Nox5 in endothelial cells developed-upon aging-severe systolic hypertension and impaired endothelium-dependent vasodilation due to uncoupled NO synthase (NOS). We conclude that NOX5-induced uncoupling of endothelial NOS is a causal mechanism and theragnostic target of an age-related hypertension endotype. Nox5 knock-in (KI) mice represent the first mechanism-based animal model of hypertension.


Asunto(s)
Hipertensión/fisiopatología , NADPH Oxidasa 5/genética , Óxido Nítrico/metabolismo , Adulto , Factores de Edad , Anciano , Animales , Células Endoteliales , Endotelio Vascular , Femenino , Técnicas de Sustitución del Gen/métodos , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Persona de Mediana Edad , NADPH Oxidasa 5/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Óxido Nítrico/genética , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Especies Reactivas de Oxígeno
4.
BMC Bioinformatics ; 23(1): 302, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879662

RESUMEN

BACKGROUND: Probabilistic functional integrated networks (PFINs) are designed to aid our understanding of cellular biology and can be used to generate testable hypotheses about protein function. PFINs are generally created by scoring the quality of interaction datasets against a Gold Standard dataset, usually chosen from a separate high-quality data source, prior to their integration. Use of an external Gold Standard has several drawbacks, including data redundancy, data loss and the need for identifier mapping, which can complicate the network build and impact on PFIN performance. Additionally, there typically are no Gold Standard data for non-model organisms. RESULTS: We describe the development of an integration technique, ssNet, that scores and integrates both high-throughput and low-throughout data from a single source database in a consistent manner without the need for an external Gold Standard dataset. Using data from Saccharomyces cerevisiae we show that ssNet is easier and faster, overcoming the challenges of data redundancy, Gold Standard bias and ID mapping. In addition ssNet results in less loss of data and produces a more complete network. CONCLUSIONS: The ssNet method allows PFINs to be built successfully from a single database, while producing comparable network performance to networks scored using an external Gold Standard source and with reduced data loss.


Asunto(s)
Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae , Almacenamiento y Recuperación de la Información , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Microb Cell Fact ; 21(1): 34, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260160

RESUMEN

BACKGROUND: Geobacillus kaustophilus is a thermophilic Gram-positive bacterium. Methods for its transformation are still under development. Earlier studies have demonstrated that pLS20catΔoriT mobilized the resident mobile plasmids from Bacillus subtilis to G. kaustophilus and transferred long segments of chromosome from one cell to another between B. subtilis. RESULTS: In this study, we applied mobilization of the B. subtilis chromosome mediated by pLS20catΔoriT to transform G. kaustophilus. We constructed a gene cassette to be integrated into G. kaustophilus and designed it within the B. subtilis chromosome. The pLS20catΔoriT-mediated conjugation successfully transferred the gene cassette from the B. subtilis chromosome into the G. kaustophilus allowing for the desired genetic transformation. CONCLUSIONS: This transformation approach described here will provide a new tool to facilitate the flexible genetic manipulation of G. kaustophilus.


Asunto(s)
Bacillus subtilis , Geobacillus , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cromosomas , Geobacillus/genética , Plásmidos/genética
6.
Brief Bioinform ; 20(2): 540-550, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30462164

RESUMEN

Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Biología Computacional/métodos , Simulación por Computador , Bases de Datos Factuales , Semántica , Humanos , Programas Informáticos
7.
Sensors (Basel) ; 21(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916259

RESUMEN

A goal of the biotechnology industry is to be able to recognise detrimental cellular states that may lead to suboptimal or anomalous growth in a bacterial population. Our current knowledge of how different environmental treatments modulate gene regulation and bring about physiology adaptations is limited, and hence it is difficult to determine the mechanisms that lead to their effects. Patterns of gene expression, revealed using technologies such as microarrays or RNA-seq, can provide useful biomarkers of different gene regulatory states indicative of a bacterium's physiological status. It is desirable to have only a few key genes as the biomarkers to reduce the costs of determining the transcriptional state by opening the way for methods such as quantitative RT-PCR and amplicon panels. In this paper, we used unsupervised machine learning to construct a transcriptional landscape model from condition-dependent transcriptome data, from which we have identified 10 clusters of samples with differentiated gene expression profiles and linked to different cellular growth states. Using an iterative feature elimination strategy, we identified a minimal panel of 10 biomarker genes that achieved 100% cross-validation accuracy in predicting the cluster assignment. Moreover, we designed and evaluated a variety of data processing strategies to ensure our methods were able to generate meaningful transcriptional landscape models, capturing relevant biological processes. Overall, the computational strategies introduced in this study facilitate the identification of a detailed set of relevant cellular growth states, and how to sense them using a reduced biomarker panel.


Asunto(s)
Bacillus subtilis , Perfilación de la Expresión Génica , Bacillus subtilis/genética , Biomarcadores , Análisis por Micromatrices
8.
Environ Microbiol ; 22(5): 1784-1800, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31840396

RESUMEN

Sulfur-oxidizing Sulfurimonas spp. are widespread in sediments, hydrothermal vent fields, aquifers and subsurface environments such as oil reservoirs where they play an important role in the sulfur cycle. We determined the genome sequence of the oil field isolate Sulfurimonas sp. strain CVO and compared its gene expression during nitrate-dependent sulfide oxidation to the coastal sediment isolate Sulfurimonas denitrificans. Formation of elemental sulfur (S0 ) and high expression of sulfide quinone oxidoreductase (SQR) genes indicates that sulfide oxidation in both strains is mediated by SQR. Subsequent oxidation of S0 was achieved by the sulfur oxidation enzyme complex (SOX). In the coastal S. denitrificans, the genes are arranged and expressed as two clusters: soxXY1 Z1 AB and soxCDY2 Z2 H, and sulfate was the sole metabolic end product. By contrast, the oil field strain CVO has only the soxCDY2 Z2 H cluster and not soxXY1 Z1 AB. Despite the absence of the soxXY1 Z1 AB cluster, strain CVO oxidized S0 to thiosulfate and sulfate, demonstrating that soxCDY2 Z2 H genes alone are sufficient for S0 oxidation in Sulfurimonas spp. and that thiosulfate is an additional metabolic end product. Screening of publicly available metagenomes revealed that Sulfurimonas spp. with only the soxCDY2 Z2 H cluster are widespread suggesting this mechanism of thiosulfate formation is environmentally significant.


Asunto(s)
Helicobacteraceae/metabolismo , Quinona Reductasas/metabolismo , Tiosulfatos/metabolismo , Helicobacteraceae/aislamiento & purificación , Nitratos/metabolismo , Yacimiento de Petróleo y Gas/microbiología , Oxidación-Reducción , Quinona Reductasas/genética , Sulfatos/metabolismo , Sulfuros/metabolismo , Azufre/metabolismo
9.
J Bacteriol ; 201(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31182499

RESUMEN

Biofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions. A better understanding of the role of these biopolymers and their response to dynamic forces is therefore crucial for understanding the interplay between biofilm structure and function. In this paper, we review experimental techniques in rheology, which help quantify the viscoelasticity of biofilms, and modeling approaches from soft matter physics that can assist our understanding of the rheological properties. We describe how these methods could be combined with synthetic biology approaches to control and investigate the effects of secreted polymers on the physical properties of biofilms. We argue that without an integrated approach of the three disciplines, the links between genetics, composition, and interaction of matrix biopolymers and the viscoelastic properties of biofilms will be much harder to uncover.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fenómenos Biomecánicos , Regulación Bacteriana de la Expresión Génica
10.
PLoS Biol ; 13(12): e1002310, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26633141

RESUMEN

Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.


Asunto(s)
Cromatina/química , ADN/química , Ingeniería Genética/métodos , Modelos Genéticos , Simbolismo , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Diseño Asistido por Computadora , Conducta Cooperativa , ADN/metabolismo , Bases de Datos de Ácidos Nucleicos , Ingeniería Genética/normas , Ingeniería Genética/tendencias , Humanos , Internet , Motivos de Nucleótidos , Publicaciones , Secuencias Reguladoras de Ácidos Nucleicos , Programas Informáticos
11.
Bioinformatics ; 32(6): 908-17, 2016 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-26559508

RESUMEN

MOTIVATION: Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. RESULTS: We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. AVAILABILITY AND IMPLEMENTATION: The annotation ontology for rule-based models can be found at http://purl.org/rbm/rbmo The krdf tool and associated executable examples are available at http://purl.org/rbm/rbmo/krdf CONTACT: anil.wipat@newcastle.ac.uk or vdanos@inf.ed.ac.uk.


Asunto(s)
Semántica , Modelos Teóricos
12.
Biochem Soc Trans ; 45(3): 781-783, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28620039

RESUMEN

The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology.


Asunto(s)
Biología Sintética , Reino Unido , Universidades
13.
Biochem Soc Trans ; 45(3): 793-803, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28620041

RESUMEN

A synthetic biology workflow is composed of data repositories that provide information about genetic parts, sequence-level design tools to compose these parts into circuits, visualization tools to depict these designs, genetic design tools to select parts to create systems, and modeling and simulation tools to evaluate alternative design choices. Data standards enable the ready exchange of information within such a workflow, allowing repositories and tools to be connected from a diversity of sources. The present paper describes one such workflow that utilizes, among others, the Synthetic Biology Open Language (SBOL) to describe genetic designs, the Systems Biology Markup Language to model these designs, and SBOL Visual to visualize these designs. We describe how a standard-enabled workflow can be used to produce types of design information, including multiple repositories and software tools exchanging information using a variety of data standards. Recently, the ACS Synthetic Biology journal has recommended the use of SBOL in their publications.


Asunto(s)
Biología Sintética/métodos , Flujo de Trabajo , Modelos Biológicos , Programas Informáticos
14.
Brief Bioinform ; 13(6): 751-68, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22445903

RESUMEN

It is well known that microbes have an intricate role in human health and disease. However, targeted strategies for modulating human health through the modification of either human-associated microbial communities or associated human-host targets have yet to be realized. New knowledge about the role of microbial communities in the microbiota of the gastrointestinal tract (GIT) and their collective genomes, the GIT microbiome, in chronic diseases opens new opportunities for therapeutic interventions. GIT microbiota participation in drug metabolism is a further pharmaceutical consideration. In this review, we discuss how computational methods could lead to a systems-level understanding of the global physiology of the host-microbiota superorganism in health and disease. Such knowledge will provide a platform for the identification and development of new therapeutic strategies for chronic diseases possibly involving microbial as well as human-host targets that improve upon existing probiotics, prebiotics or antibiotics. In addition, integrative bioinformatics analysis will further our understanding of the microbial biotransformation of exogenous compounds or xenobiotics, which could lead to safer and more efficacious drugs.


Asunto(s)
Minería de Datos , Tracto Gastrointestinal/microbiología , Metagenoma , Humanos , Probióticos/uso terapéutico , ARN Ribosómico 16S/genética
15.
PLoS Genet ; 7(4): e1001362, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21490951

RESUMEN

To better understand telomere biology in budding yeast, we have performed systematic suppressor/enhancer analyses on yeast strains containing a point mutation in the essential telomere capping gene CDC13 (cdc13-1) or containing a null mutation in the DNA damage response and telomere capping gene YKU70 (yku70Δ). We performed Quantitative Fitness Analysis (QFA) on thousands of yeast strains containing mutations affecting telomere-capping proteins in combination with a library of systematic gene deletion mutations. To perform QFA, we typically inoculate 384 separate cultures onto solid agar plates and monitor growth of each culture by photography over time. The data are fitted to a logistic population growth model; and growth parameters, such as maximum growth rate and maximum doubling potential, are deduced. QFA reveals that as many as 5% of systematic gene deletions, affecting numerous functional classes, strongly interact with telomere capping defects. We show that, while Cdc13 and Yku70 perform complementary roles in telomere capping, their genetic interaction profiles differ significantly. At least 19 different classes of functionally or physically related proteins can be identified as interacting with cdc13-1, yku70Δ, or both. Each specific genetic interaction informs the roles of individual gene products in telomere biology. One striking example is with genes of the nonsense-mediated RNA decay (NMD) pathway which, when disabled, suppress the conditional cdc13-1 mutation but enhance the null yku70Δ mutation. We show that the suppressing/enhancing role of the NMD pathway at uncapped telomeres is mediated through the levels of Stn1, an essential telomere capping protein, which interacts with Cdc13 and recruitment of telomerase to telomeres. We show that increased Stn1 levels affect growth of cells with telomere capping defects due to cdc13-1 and yku70Δ. QFA is a sensitive, high-throughput method that will also be useful to understand other aspects of microbial cell biology.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Telómero/patología , Factores de Transcripción/metabolismo , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Mutación/genética , Estabilidad del ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/genética , Temperatura
16.
Biosystems ; 236: 105105, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160995

RESUMEN

Enzymes are being increasingly exploited for their potential as industrial biocatalysts. Establishing a portfolio of useful biocatalysts from large and diverse protein family is challenging and a systematic method for candidate selection promises to aid in this task. Moreover, accurate enzyme functional annotation can only be confidently guaranteed through experimental characterisation in the laboratory. The selection of catalytically diverse enzyme panels for experimental characterisation is also an important step for shedding light on the currently unannotated proteins in enzyme families. Current selection methods often lack efficiency and scalability, and are usually non-systematic. We present a novel algorithm for the automatic selection of subsets from enzyme families. A tabu search algorithm solving the maximum diversity problem for sequence identity was designed and implemented, and applied to three diverse enzyme families. We show that this approach automatically selects panels of enzymes that contain high richness and relative abundance of the known catalytic functions, and outperforms other methods such as k-medoids.


Asunto(s)
Algoritmos , Proteínas , Proteínas/genética , Proteínas/metabolismo , Catálisis
17.
Proteomics ; 13(22): 3298-308, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24115457

RESUMEN

The use of bacterial systems for recombinant protein production has advantages of simplicity, time and cost over competing systems. However, widely used bacterial expression systems (e.g. Escherichia coli, Pseudomonas fluorescens) are not able to secrete soluble proteins directly into the culture medium. This limits yields and increases downstream processing time and costs. In contrast, Bacillus spp. secrete native enzymes directly into the culture medium at grams-per-litre quantities, although the yields of some recombinant proteins are severely limited. We have engineered the Bacillus subtilis genome to generate novel strains with precise deletions in the genes encoding ten extracytoplasmic proteases that affect recombinant protein secretion, which lack chromosomal antibiotic resistance genes. The deletion sites and presence of single nucleotide polymorphisms were confirmed by sequencing. The strains are stable and were used in industrial-scale fermenters for the production of the Bacillus anthracis vaccine protein, protective antigen, the productivity of which is extremely low in the unmodified strain. We also show that the deletion of so-called quality control proteases appears to influence cell-wall synthesis, resulting in the induction of the cell-wall stress regulon that encodes another quality control protease.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/análisis , Ingeniería Genética/métodos , Proteoma/análisis , Proteínas Recombinantes/metabolismo , Antígenos Bacterianos/análisis , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/química , Toxinas Bacterianas/análisis , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Espacio Extracelular/química , Espacio Extracelular/metabolismo , Eliminación de Gen , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteoma/química , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética
18.
Bioinformatics ; 28(11): 1495-500, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22492647

RESUMEN

MOTIVATION: Biological experiments give insight into networks of processes inside a cell, but are subject to error and uncertainty. However, due to the overlap between the large number of experiments reported in public databases it is possible to assess the chances of individual observations being correct. In order to do so, existing methods rely on high-quality 'gold standard' reference networks, but such reference networks are not always available. RESULTS: We present a novel algorithm for computing the probability of network interactions that operates without gold standard reference data. We show that our algorithm outperforms existing gold standard-based methods. Finally, we apply the new algorithm to a large collection of genetic interaction and protein-protein interaction experiments. AVAILABILITY: The integrated dataset and a reference implementation of the algorithm as a plug-in for the Ondex data integration framework are available for download at http://bio-nexus.ncl.ac.uk/projects/nogold/


Asunto(s)
Algoritmos , Teorema de Bayes , Epistasis Genética , Mapeo de Interacción de Proteínas/normas , Funciones de Verosimilitud , Mapeo de Interacción de Proteínas/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Synth Syst Biotechnol ; 8(1): 97-106, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36605706

RESUMEN

One challenge in the engineering of biological systems is to be able to recognise the cellular stress states of bacterial hosts, as these stress states can lead to suboptimal growth and lower yields of target products. To enable the design of genetic circuits for reporting or mitigating the stress states, it is important to identify a relatively reduced set of gene biomarkers that can reliably indicate relevant cellular growth states in bacteria. Recent advances in high-throughput omics technologies have enhanced the identification of molecular biomarkers specific states in bacteria, motivating computational methods that can identify robust biomarkers for experimental characterisation and verification. Focused on identifying gene expression biomarkers to sense various stress states in Bacillus subtilis, this study aimed to design a knowledge integration strategy for the selection of a robust biomarker panel that generalises on external datasets and experiments. We developed a recommendation system that ranks the candidate biomarker panels based on complementary information from machine learning model, gene regulatory network and co-expression network. We identified a recommended biomarker panel showing high stress sensing power for a variety of conditions both in the dataset used for biomarker identification (mean f1-score achieved at 0.99), as well as in a range of independent datasets (mean f1-score achieved at 0.98). We discovered a significant correlation between stress sensing power and evaluation metrics such as the number of associated regulators in a B. subtilis gene regulatory network (GRN) and the number of associated modules in a B. subtilis co-expression network (CEN). GRNs and CENs provide information relevant to the diversity of biological processes encoded by biomarker genes. We demonstrate that quantitatively relating meaningful evaluation metrics with stress sensing power has the potential for recognising biomarkers that show better sensitivity and robustness to an extended set of stress conditions and enable a more reliable biomarker panel selection.

20.
ACS Synth Biol ; 12(12): 3766-3770, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37963232

RESUMEN

GENETTA is a software tool that transforms synthetic biology designs into networks using graph theory for analysis and manipulation. By representing complex data as interconnected points, GENETTA allows dynamic customization of visualizations, including interaction networks and parts hierarchies. It can also merge design data from multiple databases, providing a unified perspective. The generated interactive network can be edited by adding nodes and edges, simplifying changes to existing design files. This article presents GENETTA and its features through specific use cases, showcasing its practical applications.


Asunto(s)
Programas Informáticos , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA