Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Chem Soc Rev ; 52(2): 510-535, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36537135

RESUMEN

Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.


Asunto(s)
Glicoconjugados , Polisacáridos , Animales , Glicosilación , Polisacáridos/química , Glicoconjugados/química , Ingeniería Metabólica , Química Clic , Mamíferos/metabolismo
2.
Angew Chem Int Ed Engl ; 63(20): e202320247, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38501674

RESUMEN

Protein O-GlcNAcylation is a ubiquitous posttranslational modification of cytosolic and nuclear proteins involved in numerous fundamental regulation processes. Investigation of O-GlcNAcylation by metabolic glycoengineering (MGE) has been carried out for two decades with peracetylated N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine derivatives modified with varying reporter groups. Recently, it has been shown that these derivatives can result in non-specific protein labeling termed S-glyco modification. Here, we report norbornene-modified GlcNAc derivatives with a protected phosphate at the anomeric position and their application in MGE. These derivatives overcome two limitations of previously used O-GlcNAc reporters. They do not lead to detectable S-glyco modification, and they efficiently react in the inverse-electron-demand Diels-Alder (IEDDA) reaction, which can be carried out even within living cells. Using a derivative with an S-acetyl-2-thioethyl-protected phosphate, we demonstrate the protein-specific detection of O-GlcNAcylation of several proteins and the protein-specific imaging of O-GlcNAcylation inside living cells by Förster resonance energy transfer (FRET) visualized by confocal fluorescence lifetime imaging microscopy (FLIM).


Asunto(s)
Acetilglucosamina , Glicoproteínas , Imagen Molecular , Norbornanos , Procesamiento Proteico-Postraduccional , Glicosilación , Ingeniería Metabólica , Norbornanos/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Transferencia Resonante de Energía de Fluorescencia , Glicoproteínas/análisis , Humanos , Células HeLa
3.
J Neurochem ; 164(4): 481-498, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36504018

RESUMEN

Metabolic glycoengineering (MGE) has been developed to visualize carbohydrates on live cells. The method allows the fluorescent labeling of sialic acid (Sia) sugar residues on neuronal plasma membranes. For instance, the efficiency of glycosylation along neurite membranes has been characterized as cell health measure in neurotoxicology. Using human dopaminergic neurons as model system, we asked here, whether it was possible to separately label diverse classes of biomolecules and to visualize them selectively on cells. Several approaches suggest that a large proportion of Sia rather incorporated in non-protein components of cell membranes than into glycoproteins. We made use here of deoxymannojirimycin (dMM), a non-toxic inhibitor of protein glycosylation, and of N-butyl-deoxynojirimycin (NBdNM) a well-tolerated inhibitor of lipid glycosylation, to develop a method of differential labeling of sialylated membrane lipids (lipid-Sia) or sialylated N-glycosylated proteins (protein-Sia) on live neurons. The time resolution at which Sia modification of lipids/proteins was observable was in the range of few hours. The approach was then extended to several other cell types. Using this technique of target-specific MGE, we found that in dopaminergic or sensory neurons >60% of Sia is lipid bound, and thus polysialic acid-neural cell adhesion molecule (PSA-NCAM) cannot be considered the major sialylated membrane component. Different from neurons, most Sia was bound to protein in HepG2 hepatoma cells or in neural crest cells. Thus, our method allows visualization of cell-specific sialylation processes for separate classes of membrane constituents.


Asunto(s)
Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Ácidos Siálicos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Glicoproteínas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Glicosilación , Lípidos
4.
Chemistry ; 29(3): e202202378, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36326082

RESUMEN

Riboswitches are 5'-untranslated mRNA regions mostly found in bacteria. They are promising drug targets to overcome emerging bacterial resistance against commonly used antibiotics. The glmS riboswitch is unique among the family of riboswitches as it is a ribozyme that undergoes self-cleavage upon binding to glucosamine-6-phosphate (GlcN6P). Previously, we showed that carba glucosamine-6-phosphate (carba-GlcN6P) induces self-cleavage of the riboswitch with a potency similar to that of GlcN6P. Here, we report a synthetic approach to a new class of carba-GlcN6P derivatives with an alkoxy substituent in the carba position. Key features of the synthesis are a ring closing metathesis followed by a hydroboration. The strategy gives access to libraries of carba-GlcN6P derivatives. Ribozyme cleavage assays unraveled new activators for the glmS riboswitch from Listeria monocytogenes and Clostridium difficile.


Asunto(s)
Carba-azúcares , ARN Catalítico , Riboswitch , ARN Catalítico/metabolismo , Carba-azúcares/metabolismo , Proteínas Bacterianas/metabolismo , Glucosamina , Fosfatos
5.
Chembiochem ; 23(1): e202100266, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34343379

RESUMEN

The extracellular matrix (ECM) represents the natural environment of cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose, it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross-linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM. In a previous approach (S. M. Ruff, S. Keller, D. E. Wieland, V. Wittmann, G. E. M. Tovar, M. Bach, P. J. Kluger, Acta Biomater. 2017, 52, 159-170), we demonstrated the modification of an ECM with azido groups, which can be addressed by bioorthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here, we demonstrate the modification of an ECM with dienophiles (terminal alkenes, cyclopropene), which can be addressed by an inverse-electron-demand Diels-Alder (IEDDA) reaction. This reaction is cell friendly as there are no cytotoxic catalysts needed. We show the equipment of the ECM with a bioactive molecule (enzyme) and prove that the functional groups do not influence cellular behavior. Thus, this new material has great potential for use as a biomaterial, which can be individually modified in a wide range of applications.


Asunto(s)
Ciclopropanos/síntesis química , Química Clic , Reacción de Cicloadición , Ciclopropanos/química , Electrones , Matriz Extracelular/química , Matriz Extracelular/metabolismo
6.
Chemistry ; 28(27): e202200267, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35286724

RESUMEN

Multivalent receptor-ligand binding is a key principle in a plethora of biological recognition processes. Immense binding affinities can be achieved with the correct spatial orientation of the ligands. Accordingly, the incorporation of photoswitches, which can be used to reversibly change the spatial orientation of molecules, into multivalent ligands is a means to alter the binding affinity and possibly also the binding mode of such ligands. We report a divalent ligand for the model lectin wheat germ agglutinin (WGA) containing an arylazopyrazole photoswitch. This switch, which has recently been introduced as an alternative to the more commonly used azobenzene moiety, is characterized by almost quantitative E/Z photoswitching in both directions, high quantum yields, and high thermal stability of the Z isomer. The ligand was designed in a way that only one of the isomers is able to bridge adjacent binding sites of WGA leading to a chelating binding mode. Photoswitching induces an unprecedentedly high change in lectin binding affinity as determined by isothermal titration calorimetry (ITC). Furthermore, additional dynamic light scattering (DLS) data suggest that the binding mode of the ligand changes from chelating binding of the E isomer to crosslinking binding of the Z isomer.


Asunto(s)
Lectinas , Sitios de Unión , Lectinas/química , Ligandos , Unión Proteica , Aglutininas del Germen de Trigo/química
7.
Chembiochem ; 22(7): 1243-1251, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33180370

RESUMEN

Metabolic glycoengineering (MGE) is an established method to incorporate chemical reporter groups into cellular glycans for subsequent bioorthogonal labeling. The method has found broad application for the visualization and isolation of glycans allowing their biological roles to be probed. Furthermore, targeting of drugs to cancer cells that present high concentrations of sialic acids on their surface is an attractive approach. We report the application of a labeling reaction using 1,2-diamino-4,5-methylenedioxybenzene for the quantification of sialic acid derivates after MGE with various azide- and alkene-modified ManNAc, GlcNAc, and GalNAc derivatives. We followed the time course of sialic acid production and were able to detect sialic acids modified with the chemical reporter group - not only after addition of ManNAc derivatives to the cell culture. A cyclopropane-modified ManNAc derivative, being a model for the corresponding cyclopropene analog, which undergoes fast inverse-electron-demand Diels-Alder reactions with 1,2,4,5-tetrazines, resulted in the highest incorporation efficiency. Furthermore, we investigated whether feeding the cells with natural and unnatural ManNAc derivative results in increased levels of sialic acids and found that this is strongly dependent on the investigated cell type and cell fraction. For HEK 293T cells, a strong increase in free sialic acids in the cell interior was found, whereas cell-surface sialic acid levels are only moderately increased.


Asunto(s)
Alquenos/química , Azidas/química , Hexosaminas/química , Ingeniería Metabólica , Ácido N-Acetilneuramínico/análisis , Reacción de Cicloadición , Colorantes Fluorescentes/química , Células HEK293 , Células HeLa , Humanos , Microscopía Fluorescente
8.
Arch Toxicol ; 94(2): 449-467, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31828357

RESUMEN

While there are many methods to quantify the synthesis, localization, and pool sizes of proteins and DNA during physiological responses and toxicological stress, only few approaches allow following the fate of carbohydrates. One of them is metabolic glycoengineering (MGE), which makes use of chemically modified sugars (CMS) that enter the cellular biosynthesis pathways leading to glycoproteins and glycolipids. The CMS can subsequently be coupled (via bio-orthogonal chemical reactions) to tags that are quantifiable by microscopic imaging. We asked here, whether MGE can be used in a quantitative and time-resolved way to study neuronal glycoprotein synthesis and its impairment. We focused on the detection of sialic acid (Sia), by feeding human neurons the biosynthetic precursor N-acetyl-mannosamine, modified by an azide tag. Using this system, we identified non-toxic conditions that allowed live cell labeling with high spatial and temporal resolution, as well as the quantification of cell surface Sia. Using combinations of immunostaining, chromatography, and western blotting, we quantified the percentage of cellular label incorporation and effects on glycoproteins such as polysialylated neural cell adhesion molecule. A specific imaging algorithm was used to quantify Sia incorporation into neuronal projections, as potential measure of complex cell function in toxicological studies. When various toxicants were studied, we identified a subgroup (mitochondrial respiration inhibitors) that affected neurite glycan levels several hours before any other viability parameter was affected. The MGE-based neurotoxicity assay, thus allowed the identification of subtle impairments of neurochemical function with very high sensitivity.


Asunto(s)
Membrana Celular/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Biología Molecular/métodos , Ácido N-Acetilneuramínico/metabolismo , Síndromes de Neurotoxicidad/patología , Bortezomib/farmacología , Línea Celular , Glicoconjugados/química , Glicoconjugados/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hexosaminas/química , Hexosaminas/metabolismo , Hexosaminas/farmacología , Humanos , Neuritas/química , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/metabolismo , Tunicamicina/farmacología
9.
Chembiochem ; 20(19): 2479-2484, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31090999

RESUMEN

EPR spectroscopy of diamagnetic bio-macromolecules is based on site-directed spin labeling (SDSL). Herein, a novel labeling strategy for proteins is presented. A nitroxide-based spin label has been developed and synthesized that can be ligated to proteins by an inverse-electron-demand Diels-Alder (DAinv ) cycloaddition to genetically encoded noncanonical amino acids. The nitroxide moiety is shielded by a photoremovable protecting group with an attached tetra(ethylene glycol) unit to achieve water solubility. SDSL is demonstrated on two model proteins with the photoactivatable nitroxide for DAinv reaction (PaNDA) label. The strategy features high reaction rates, combined with high selectivity, and the possibility to deprotect the nitroxide in Escherichia coli lysate.


Asunto(s)
Aminoácidos/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Óxidos de Nitrógeno/química , Proteínas/química , Marcadores de Spin , Reacción de Cicloadición , Humanos
10.
Chembiochem ; 20(2): 166-171, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30499611

RESUMEN

Bioorthogonal labeling of multiple biomolecules is of current interest in chemical biology. Metabolic glycoengineering (MGE) has been shown to be an appropriate approach to visualizing carbohydrates. Here, we report that the nitrile imine-alkene cycloaddition (photoclick reaction) is a suitable ligation reaction in MGE. Using a mannosamine derivative with an acrylamide reporter group that is efficiently metabolized by cells and that quickly reacts in the photoclick reaction, we labeled sialic acids on the surface of living cells. Screening of several alkenes showed that a previously reported carbamate-linked methylcyclopropene reporter that is well suited for the inverse-electron-demand Diels-Alder (DAinv ) reaction has a surprisingly low reactivity in the photoclick reaction. Thus, for the first time, we were able to triply label glycans by a combination of DAinv , photoclick, and copper-free click chemistry.


Asunto(s)
Polisacáridos/química , Alquenos/química , Química Clic , Reacción de Cicloadición , Células HEK293 , Humanos , Iminas/química , Estructura Molecular , Nitrilos/química , Procesos Fotoquímicos
11.
Chemistry ; 25(69): 15759-15764, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31628819

RESUMEN

A general and robust method for the incorporation of aspartates with a thioacid side chain into peptides has been developed. Pseudoproline tripeptides served as building blocks for the efficient fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis of thioacid-containing peptides. These peptides were readily converted to complex N-glycopeptides by using a fast and chemoselective one-pot deprotection/ligation procedure. Furthermore, a novel side reaction that can lead to site-selective peptide cleavage using thioacids (CUT) was discovered and studied in detail.


Asunto(s)
Glicopéptidos/síntesis química , Oligopéptidos/química , Prolina/análogos & derivados , Técnicas de Síntesis en Fase Sólida/métodos , Tiazoles/química , Ácidos/química , Secuencia de Aminoácidos , Fluorenos/síntesis química , Fluorenos/química , Glicopéptidos/química , Oligopéptidos/síntesis química , Prolina/síntesis química , Prolina/química , Compuestos de Sulfhidrilo/química , Tiazoles/síntesis química
12.
Biomacromolecules ; 20(1): 294-304, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30512919

RESUMEN

Nanoparticles with a covalently bound shell of carbohydrate or sulfate groups, respectively, and a polyethylene core were generated by Ni(II)-catalyzed aqueous copolymerization of ethylene with comonomers undec-10-en-1-yl sulfate, undec-10-en-1-yl ß-d-glucoside or undec-10-en-1-yl α-d-mannoside, respectively. Via remote substituents of the catalyst, the degree of branching and consequently degree of crystallinity of the polyethylene core of the glyconanoparticles could be controlled. This in turn impacts particle shapes, from spherical to anisotropic platelets, as observed by cryo-transmission electron microscopy. Enzyme-linked lectin assays revealed the mannose-decorated nanocrystals to be efficient multivalent ligands for concavalin A.


Asunto(s)
Manósidos/química , Nanopartículas/química , Lectinas/química , Polietilenglicoles/química , Polimerizacion , Compuestos de Azufre/química
13.
Beilstein J Org Chem ; 15: 584-601, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931000

RESUMEN

Cyclopropenes have been proven valuable chemical reporter groups for metabolic glycoengineering (MGE). They readily react with tetrazines in an inverse electron-demand Diels-Alder (DAinv) reaction, a prime example of a bioorthogonal ligation reaction, allowing their visualization in biological systems. Here, we present a comparative study of six cyclopropene-modified hexosamine derivatives and their suitability for MGE. Three mannosamine derivatives in which the cyclopropene moiety is attached to the sugar by either an amide or a carbamate linkage and that differ by the presence or absence of a stabilizing methyl group at the double bond have been examined. We determined their DAinv reaction kinetics and their labeling intensities after metabolic incorporation. To determine the efficiencies by which the derivatives are metabolized to sialic acids, we synthesized and investigated the corresponding cyclopropane derivatives because cyclopropenes are not stable under the analysis conditions. From these experiments, it became obvious that N-(cycloprop-2-en-1-ylcarbonyl)-modified (Cp-modified) mannosamine has the highest metabolic acceptance. However, carbamate-linked N-(2-methylcycloprop-2-en-1-ylmethyloxycarbonyl)-modified (Cyoc-modified) mannosamine despite its lower metabolic acceptance results in the same cell-surface labeling intensity due to its superior reactivity in the DAinv reaction. Based on the high incorporation efficiency of the Cp derivative we synthesized and investigated two new Cp-modified glucosamine and galactosamine derivatives. Both compounds lead to comparable, distinct cell-surface staining after MGE. We further found that the amide-linked Cp-modified glucosamine derivative but not the Cyoc-modified glucosamine is metabolically converted to the corresponding sialic acid.

14.
Soft Matter ; 14(35): 7214-7227, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30132500

RESUMEN

Surfactants are not only pivotal constituents in any biological organism in the form of phospholipids, they are also essential for numerous applications benefiting from a large, internal surface, such as in detergents, for emulsification purposes, phase transfer catalysis or even nanoparticle stabilization. A particularly interesting, green class of surfactants contains glycoside head groups. Considering the variability of glycosides, a large number of surfactant isomers become accessible. According to established models in surfactant science such as the packing parameter or the hydrophilic lipophilic balance (HLB), they do not differ from each other and should, thus, have similar properties. Here, we present the preparation of a systematic set of glycoside surfactants and in particular isomers. We investigate to which extent they differ in several key features such as critical aggregation concentration, thermodynamic parameters, etc. Analytical methods like isothermal titration calorimetry (ITC), tensiometry, dynamic light scattering (DLS), small angle-X-ray scattering (SAXS), transmission electron microscopy (TEM) and others were applied. It was found that glycosurfactant isomers vary in their emulsification properties by up to two orders of magnitude. Finally, we have investigated the role of the surfactants in a microemulsion-based technique for the generation of zinc oxide (ZnO) nanoparticles. We found that the choice of the carbohydrate head has a marked effect on the shape of the formed inorganic nanocrystals.


Asunto(s)
Carbohidratos/química , Emulsionantes/química , Interacciones Hidrofóbicas e Hidrofílicas , Tensoactivos/química , Conformación de Carbohidratos , Modelos Moleculares
15.
Chembiochem ; 18(13): 1242-1250, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28318083

RESUMEN

Sialic acids play an important role in numerous cell adhesion processes, and sialylation levels are known to be altered under certain pathogenic conditions, such as cancer. Metabolic glycoengineering with mannosamine derivatives is a convenient way to introduce non-natural chemical reporter groups into sialylated glycoconjugates, offering the opportunity to label sialic acids by using bioorthogonal ligation chemistry. The labeling intensity depends not only on the rate of the ligation reaction but also on the extent to which the natural sialic acids are replaced by the modified ones; that is, the incorporation efficiency. Here, we present a comparative study of eight mannosamine derivatives featuring terminal alkenes as chemical reporter groups that can be labeled by an inverse-electron-demand Diels-Alder (DAinv) reaction. The derivatives differed in chain length as well as the type of linkage (carbamates, amides, and a urea) that connects the terminal alkene to the sugar. As a general trend, increasing chain lengths resulted in higher DAinv reactivity and, at the same time, reduced incorporation efficiency. Carbamates were better accepted than amides with the same chain length; nevertheless, the latter resulted in more intense cell-surface staining, visible by live-cell fluorescence microscopy. A urea derivative was also shown to be accepted.


Asunto(s)
Glicoconjugados/química , Hexosaminas/química , Ácidos Siálicos/química , Coloración y Etiquetado/métodos , Alquenos/química , Amidas/química , Carbamatos/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Reacción de Cicloadición , Glicoconjugados/metabolismo , Células HEK293 , Hexosaminas/metabolismo , Humanos , Microscopía Fluorescente , Ácidos Siálicos/metabolismo , Urea/química
16.
Chembiochem ; 18(5): 435-440, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28012261

RESUMEN

The ever-growing number of pathogenic bacteria resistant to treatment with antibiotics call for the development of novel compounds with as-yet unexplored modes of action. Here, we demonstrate the in vivo antibacterial activity of carba-α-d-glucosamine (CGlcN). In this mode of action study, we provide evidence that CGlcN-mediated growth inhibition is due to glmS ribozyme activation, and we demonstrate that CGlcN hijacks an endogenous activation pathway, hence utilizing a prodrug mechanism. This is the first report describing antibacterial activity mediated by activating the self-cleaving properties of a ribozyme. Our results open the path towards a compound class with an entirely novel and distinct molecular mechanism.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Ciclohexanoles/química , Ciclohexilaminas/química , Glucosamina/farmacología , ARN Catalítico/metabolismo , Antibacterianos/química , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Activación Enzimática/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Mutación , ARN Catalítico/genética
17.
Chemistry ; 23(51): 12604-12612, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28661578

RESUMEN

The glmS ribozyme is a bacterial gene-regulating riboswitch that controls cell wall synthesis, depending on glucosamine-6-phosphate as a cofactor. Due to the presence of this ribozyme in several human pathogen bacteria (e.g., MRSA, VRSA), the glmS ribozyme represents an attractive target for the development of artificial cofactors. The substitution of the ring oxygen in carbohydrates by functionalized methylene groups leads to a new generation of glycomimetics that exploits distinct interaction possibilities with their target structure in biological systems. Herein, we describe the synthesis of mono-fluoro-modified carba variants of α-d-glucosamine and ß-l-idosamine. (5aR)-Fluoro-carba-α-d-glucosamine-6-phosphate is a synthetic mimic of the natural ligand of the glmS ribozyme and is capable of effectively addressing its unique self-cleavage mechanism. However, in contrast to what was expected, the activity is significantly decreased compared to its non-fluorinated analog. By combining self-cleavage assays with the Bacillus subtilis and Staphylococcus aureus glmS ribozyme and molecular docking studies, we provide a structure-activity relationship for fluorinated carba-sugars.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carba-azúcares/metabolismo , ARN Catalítico/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Carba-azúcares/síntesis química , Carba-azúcares/química , Ciclohexanoles/síntesis química , Ciclohexanoles/química , Ciclohexanoles/metabolismo , Ciclohexilaminas/síntesis química , Ciclohexilaminas/química , Ciclohexilaminas/metabolismo , Halogenación , Conformación Molecular , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , ARN Catalítico/química , Staphylococcus aureus/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
18.
J Org Chem ; 82(7): 3680-3691, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28294610

RESUMEN

Microcystins (MCs) are highly toxic natural products which are produced by cyanobacteria. They can be released to the water during harmful algal blooms and are a serious threat to animals and humans. Described is the total synthesis of the cyanotoxin microcystin-LF (MC-LF, 1a) and two derivatives thereof. Deuterated derivative 1b is of interest as an internal standard during MC quantification in biological samples by mass spectrometry and alkyne-labeled 1c can be employed for toxin derivatization by click chemistry with an azide-containing reporter molecule or as an activity-based probe to identify interaction partners. Application of tert-butyl ester protecting groups for erythro-ß-d-methylaspartic acid and γ-d-glutamic acid were key for an isomerization-free synthesis. The analytical data of synthetic MC-LF were identical to those of an authentic sample of the natural product. All derivatives 1a-c were determined to be potent inhibitors of protein phosphatase-1 with similar activity.


Asunto(s)
Microcistinas/síntesis química , Animales , Cromatografía Líquida de Alta Presión , Ciclización , Humanos , Espectrometría de Masas , Análisis Espectral
19.
Prostate ; 76(5): 456-68, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26715028

RESUMEN

BACKGROUND: PLGA microsphere-based vaccination has been proven to be effective in immunotherapy of syngeneic model tumors in mice. The critical step for the translation to humans is the identification of immunogenic tumor antigens and potent vaccine formulations to overcome immune tolerance. METHODS: HLA-A*0201 transgenic mice were immunized with eight different human prostate cancer peptide antigens co-encapsulated with TLR ligands into PLGA microspheres and analyzed for antigen-specific and functional cytotoxic T lymphocyte responses. RESULTS: Only vaccination with STEAP1(262-270) peptide encapsulated in PLGA MS could effectively crossprime CTLs in vivo. These CTLs recognized STEAP1(262-270) /HLA-A*0201 complexes on human dendritic cells and prostate cancer cell lines and specifically lysed target cells in vivo. Vaccination with PLGA microspheres was much more potent than with incomplete Freund's adjuvant. CONCLUSIONS: Our data suggests that there exist great differences in the immunogenicity of human PCa peptide antigens despite comparable MHC class I binding characteristics. Immunogenic STEAP1(262-270) peptide encapsulated into PLGA microspheres however was able to induce vigorous and functional antigen-specific CTLs and therefore is a promising novel approach for immunotherapy against advanced stage prostate cancer.


Asunto(s)
Antígenos de Neoplasias/farmacología , Antígeno HLA-A2/genética , Inmunoterapia/métodos , Fragmentos de Péptidos/farmacología , Neoplasias de la Próstata/terapia , Linfocitos T Citotóxicos/efectos de los fármacos , Animales , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer , Masculino , Ratones , Ratones Transgénicos , Microesferas , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Linfocitos T Citotóxicos/inmunología
20.
Chembiochem ; 17(14): 1374-83, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27147502

RESUMEN

Metabolic glycoengineering (MGE) allows the introduction of unnaturally modified carbohydrates into cellular glycans and their visualization through bioorthogonal ligation. Alkenes, for example, have been used as reporters that can react through inverse-electron-demand Diels-Alder cycloaddition with tetrazines. Earlier, norbornenes were shown to be suitable dienophiles; however, they had not previously been applied for MGE. We synthesized two norbornene-modified mannosamine derivatives that differ in the stereochemistry at the norbornene (exo/endo linkage). Kinetic investigations revealed that the exo derivative reacts more than twice as rapidly as the endo derivative. Through derivatization with 1,2-diamino-4,5-methylenedioxybenzene (DMB) we confirmed that both derivatives are accepted by cells and incorporated after conversion to a sialic acid. In further MGE experiments the incorporated sugars were ligated to a fluorophore and visualized through confocal fluorescence microscopy and flow cytometry.


Asunto(s)
Bioingeniería/métodos , Hexosaminas/química , Permeabilidad de la Membrana Celular , Citometría de Flujo , Células HEK293 , Hexosaminas/farmacocinética , Humanos , Cinética , Microscopía Confocal , Ácido N-Acetilneuramínico/farmacocinética , Norbornanos/química , Fenilendiaminas/química , Polisacáridos/química , Polisacáridos/farmacocinética , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA