RESUMEN
Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.
Asunto(s)
Región CA1 Hipocampal , Gerbillinae , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Daño por Reperfusión , Sefarosa/análogos & derivados , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Masculino , Daño por Reperfusión/tratamiento farmacológico , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Modelos Animales de Enfermedad , Microglía/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Polisacáridos/farmacología , Neuronas/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismoRESUMEN
Aucubin, an iridoid glycoside, possesses beneficial bioactivities in many diseases, but little is known about its neuroprotective effects and mechanisms in brain ischemia and reperfusion (IR) injury. This study evaluated whether aucubin exhibited neuroprotective effects against IR injury in the hippocampal CA1 region through anti-inflammatory activity in gerbils. Aucubin (10 mg/kg) was administered intraperitoneally once a day for one week prior to IR. Neuroprotective effects of aucubin were assessed by neuronal nuclei (NeuN) immunofluorescence and Floro-Jade C (FJC) histofluorescence. Microgliosis and astrogliosis were evaluated using immunohistochemistry with anti-ionized calcium binding adapter protein 1 (Iba1) and glial fibrillary acidic protein (GFAP). Protein levels of proinflammatory cytokines interleukin1 beta (IL1ß) and tumor necrosis factor alpha (TNFα) were assayed using enzyme-linked immunosorbent assay and Western blot. Changes in toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway were assessed by measuring levels of TLR4, inhibitor of NF-κB alpha (IκBα), and NF-κB p65 using Western blot. Aucubin treatment protected pyramidal neurons from IR injury. IR-induced microgliosis and astrogliosis were suppressed by aucubin treatment. IR-induced increases in IL1ß and TNFα levels were significantly alleviated by the treatment. IR-induced upregulation of TLR4 and downregulation of IκBα were significantly prevented by aucubin treatment, and IR-induced nuclear translocation of NF-κB was reversed by aucubin treatment. Briefly, aucubin exhibited neuroprotective effects against brain IR injury, which might be related to the attenuation of neuroinflammation through inhibiting the TLR-4/NF-κB signaling pathway. These results suggest that aucubin pretreatment may be a potential approach for the protection of brain IR injury.
Asunto(s)
Isquemia Encefálica , Glucósidos Iridoides , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Inhibidor NF-kappaB alfa/metabolismo , Gerbillinae/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Toll-Like 4/metabolismo , Gliosis , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia , Infarto Cerebral , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismoRESUMEN
BACKGROUND: A gerbil model of ischemia and reperfusion (IR) injury in the forebrain has been developed for studies on mechanisms, prevention and therapeutic strategies of IR injury in the forebrain. Pycnogenol® (PYC), a standardized extract of French maritime pine tree (Pinus pinaster Aiton) has been exploited as an additive for dietary supplement. In the present study, we investigated the neuroprotective effects of post-treatment with PYC and its therapeutic mechanisms in gerbils. METHODS: The gerbils were given sham and IR operation and intraperitoneally injected with vehicle and Pycnogenol® (25, 50 and 100 mg/kg, respectively) immediately, at 24 hours and 48 hours after sham and IR operation. Through 8-arm radial maze test and passive avoidance test, each spatial memory and short-term memory function was assessed. To examine the neuroprotection of Pycnogenol®, we conducted cresyl violet staining, immunohistochemistry for neuronal nuclei, and Fluoro-Jade B histofluorescence. Moreover, we carried out immunohistochemistry for immunoglobulin G (IgG) to investigate blood-brain barrier (BBB) leakage and interleukin-1ß (IL-1ß) to examine change in pro-inflammatory cytokine. RESULTS: We found that IR-induced memory deficits were significantly ameliorated when 100 mg/kg Pycnogenol® was treated. In addition, treatment with 100 mg/kg Pycnogenol®, not 25 mg/kg nor 50 mg/kg, conferred neuroprotective effect against IR injury. For its mechanisms, we found that 100 mg/kg Pycnogenol® significantly reduced BBB leakage and inhibited the expression of IL-1ß. CONCLUSIONS: Therapeutic treatment (post-treatment) with Pycnogenol® after IR effectively attenuated ischemic brain injury in gerbils. Based on these results, we suggest that PYC can be employed as an important material for ischemic drugs.
Asunto(s)
Lesiones Encefálicas , Disfunción Cognitiva , Fármacos Neuroprotectores , Animales , Gerbillinae , Barrera Hematoencefálica , Enfermedades Neuroinflamatorias , Hipocampo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Fármacos Neuroprotectores/farmacologíaRESUMEN
Laminarin is a polysaccharide isolated from brown marine algae and has a wide range of bioactivities, including immunoregulatory and anti-inflammatory properties. However, the effects of laminarin on atopic dermatitis have not been demonstrated. This study investigated the potential effects of topical administration of laminarin using a Balb/c mouse model of oxazolone-induced atopic dermatitis-like skin lesions. Our results showed that topical administration of laminarin to the ear of the mice improved the severity of the dermatitis, including swelling. Histological analysis revealed that topical laminarin significantly decreased the thickening of the epidermis and dermis and the infiltration of mast cells in the skin lesion. Serum immunoglobulin E levels were also significantly decreased by topical laminarin. Additionally, topical laminarin significantly suppressed protein levels of oxazolone-induced proinflammatory cytokines, such as interleukin-1ß, tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α in the skin lesion. These results indicate that topical administration of laminarin can alleviate oxazolone-induced atopic dermatitis by inhibiting hyperproduction of IgE, mast cell infiltration, and expressions of proinflammatory cytokines. Based on these findings, we propose that laminarin can be a useful candidate for the treatment of atopic dermatitis.
Asunto(s)
Dermatitis Atópica , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Oxazolona/toxicidad , Oxazolona/metabolismo , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , Inmunoglobulina E , Extractos Vegetales/farmacología , Administración Tópica , Citocinas/metabolismo , Ratones Endogámicos BALB C , PielRESUMEN
Astaxanthin is a powerful biological antioxidant and is naturally generated in a great variety of living organisms. Some studies have demonstrated the neuroprotective effects of ATX against ischemic brain injury in experimental animals. However, it is still unknown whether astaxanthin displays neuroprotective effects against severe ischemic brain injury induced by longer (severe) transient ischemia in the forebrain. The purpose of this study was to evaluate the neuroprotective effects of astaxanthin and its antioxidant activity in the hippocampus of gerbils subjected to 15-min transient forebrain ischemia, which led to the massive loss (death) of pyramidal cells located in hippocampal cornu Ammonis 1-3 (CA1-3) subfields. Astaxanthin (100 mg/kg) was administered once daily for three days before the induction of transient ischemia. Treatment with astaxanthin significantly attenuated the ischemia-induced loss of pyramidal cells in CA1-3. In addition, treatment with astaxanthin significantly reduced ischemia-induced oxidative DNA damage and lipid peroxidation in CA1-3 pyramidal cells. Moreover, the expression of the antioxidant enzymes superoxide dismutase (SOD1 and SOD2) in CA1-3 pyramidal cells were gradually and significantly reduced after ischemia. However, in astaxanthin-treated gerbils, the expression of SOD1 and SOD2 was significantly high compared to in-vehicle-treated gerbils before and after ischemia induction. Collectively, these findings indicate that pretreatment with astaxanthin could attenuate severe ischemic brain injury induced by 15-min transient forebrain ischemia, which may be closely associated with the decrease in oxidative stress due to astaxanthin pretreatment.
Asunto(s)
Lesiones Encefálicas , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo , Isquemia/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Superóxido Dismutasa-1/metabolismo , XantófilasRESUMEN
Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.
Asunto(s)
Ataque Isquémico Transitorio , Corteza Motora , Daño por Reperfusión , Animales , Astrocitos/metabolismo , Células Endoteliales/metabolismo , Gerbillinae/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Isquemia/metabolismo , Ataque Isquémico Transitorio/metabolismo , Corteza Motora/metabolismo , Prosencéfalo/metabolismo , Daño por Reperfusión/metabolismoRESUMEN
Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.
RESUMEN
Transient ischemia in the brain causes blood-brain barrier (BBB) breakdown and dysfunction, which is related to ischemia-induced neuronal damage. Leakage of plasma proteins following transient ischemia is one of the indicators that is used to determine the extent of BBB dysfunction. In this study, neuronal damage/death, leakage of albumin and IgG, microgliosis, and inflammatory cytokine expression were examined in the hippocampal CA1 region, which is vulnerable to transient ischemia, following 5-min (mild) and 15-min (severe) ischemia in gerbils induced by transient common carotid arteries occlusion (tCCAo). tCCAo-induced neuronal damage/death occurred earlier and was more severe after 15-min tCCAo vs. after 5-min tCCAo. Significant albumin and IgG leakage (albumin and IgG immunoreactivity) took 1 or 2 days to begin, and immunoreactivity was markedly increased 5 days after 5-min tCCAo. While, albumin and IgG leakage began to increase 6 h after 15-min tCCAo and remained significantly higher over time than that seen in 5-min tCCAo. IgG immunoreactivity was observed in degenerating neurons and activated microglia after tCCAo, and microglia were activated to a greater extent after 15-min tCCAo than 5-min tCCAo. In addition, following 15-min tCCAo, pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß)] immunoreactivity was significantly higher than that seen following 5-min tCCAo, whereas immunoreactivity of anti-inflammatory cytokines (IL-4 and IL-13) was lower in 15-min than 5-min tCCAo. These results indicate that duration of tCCAo differentially affects the timing and degree of neuronal damage or loss, albumin and IgG leakage and inflammatory cytokine expression in brain tissue. In addition, more severe BBB leakage is closely related to acceleration of neuronal damage through increased microglial activation and pro-inflammatory cytokine expression in the ischemic hippocampal CA1 region.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Región CA1 Hipocampal/metabolismo , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Ataque Isquémico Transitorio/metabolismo , Neuronas/metabolismo , Animales , Barrera Hematoencefálica/patología , Región CA1 Hipocampal/patología , Muerte Celular/fisiología , Citocinas/genética , Expresión Génica , Gerbillinae , Ataque Isquémico Transitorio/genética , Ataque Isquémico Transitorio/patología , Masculino , Neuronas/patología , Índice de Severidad de la EnfermedadRESUMEN
It has been studied that the damage or death of neurons in the hippocampus is different according to hippocampal subregions, cornu ammonis 1-3 (CA1-3), after transient ischemia in the forebrain, showing that pyramidal neurons located in the subfield CA1 (CA1) are most vulnerable to this ischemia. Hyperthermia is a proven risk factor for brain ischemia and can develop more severe and extensive brain damage related with mortality rate. It is well known that heme oxygenase-1 (HO-1) activity and expression is increased by various stimuli in the brain, including hyperthermia. HO-1 can be either protective or deleterious in the central nervous system, and its roles depend on the expression levels of enzymes. In this study, we investigated the effects of hyperthermia during ischemia on HO-1 expression and neuronal damage/death in the hippocampus to examine the relationship between HO-1 and neuronal damage/death following 5-min transient ischemia in the forebrain using gerbils. Gerbils were assigned to four groups: (1) sham-operated gerbils with normothermia (Normo + sham group); (2) ischemia-operated gerbils with normothermia (Normo + ischemia group); (3) sham-operated gerbils with hyperthermia (39.5 ± 0.2 °C) during ischemia (Hyper + sham group); and (4) ischemia-operated gerbils with hyperthermia during ischemia (Hyper + ischemia group). HO-1 expression levels in CA1-3 of the Hyper + ischemia group were significantly higher than those in the Normo + ischemia group. HO-1 immunoreactivity in the Hyper + ischemia group was significantly increased in pyramidal neurons and astrocytes with time after ischemia, and the immunoreactivity was significantly higher than that in the Normo + ischemia group. In the Normo + Ischemia group, neuronal death was shown in pyramidal neurons located only in CA1 at 5 days after ischemia. However, in the Hyper + ischemia group, pyramidal neuronal death occurred in CA1-3 at 2 days after ischemia. Taken together, our findings showed that brain ischemic insult during hyperthermic condition brings up earlier and severer neuronal damage/death in the hippocampus, showing that HO-1 expression in neurons and astrocytes is different according to brain subregions and temperature condition. Based on these findings, we suggest that hyperthermia in patients with ischemic stroke must be taken into the consideration in the therapy.
Asunto(s)
Lesiones Encefálicas/genética , Hemo-Oxigenasa 1/genética , Hipocampo/metabolismo , Daño por Reperfusión/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo/lesiones , Hipocampo/fisiopatología , Células Piramidales/metabolismo , Células Piramidales/patología , Daño por Reperfusión/patologíaRESUMEN
In the present study, we investigated the neuroprotective effect of post-ischemic treatment with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by occlusion of both common carotid arteries for 5 min under normothermic conditions (37 ± 0.2 °C). The ischemic gerbils were treated with vehicle, hypothermia (whole-body cooling; 33.0 ± 0.2 °C), or 200 mg/kg OXC. Post-ischemic treatments with vehicle and hypothermia failed to attenuate and improve, respectively, ischemia-induced hyperactivity and cognitive impairment (decline in spatial and short-term memory). However, post-ischemic treatment with OXC significantly attenuated the hyperactivity and the cognitive impairment, showing that OXC treatment significantly reduced body temperature (to about 33 °C). When the hippocampus was histopathologically examined, pyramidal cells (principal neurons) were dead (lost) in the subfield Cornu Ammonis 1 (CA1) of the gerbils treated with vehicle and hypothermia on Day 4 after ischemia, but these cells were saved in the gerbils treated with OXC. In the gerbils treated with OXC after ischemia, the expression of transient receptor potential vanilloid type 1 (TRPV1; one of the transient receptor potential cation channels) was significantly increased in the CA1 region compared with that in the gerbils treated with vehicle and hypothermia. In brief, our results showed that OXC-induced hypothermia after transient forebrain ischemia effectively protected against ischemia-reperfusion injury through an increase in TRPV1 expression in the gerbil hippocampal CA1 region, indicating that TRPV1 is involved in OXC-induced hypothermia.
Asunto(s)
Hipotermia Inducida , Isquemia/terapia , Neuroprotección , Fármacos Neuroprotectores/uso terapéutico , Oxcarbazepina/uso terapéutico , Prosencéfalo/patología , Canales Catiónicos TRPV/metabolismo , Animales , Temperatura Corporal/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cognición/efectos de los fármacos , Gerbillinae , Hipocampo/efectos de los fármacos , Hipocampo/patología , Isquemia/patología , Isquemia/fisiopatología , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxcarbazepina/farmacología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/fisiopatologíaRESUMEN
It has been reported that CD200 (Cluster of Differentiation 200), expressed in neurons, regulates microglial activation in the central nervous system, and a decrease in CD200 expression causes an increase in microglial activation and neuronal loss. The aim of this study was to investigate time-dependent changes in CD200 expression in the hippocampus proper (CA1, 2, and 3 fields) after transient forebrain ischemia for 5 min in gerbils. In this study, 5-min ischemia evoked neuronal death (loss) of pyramidal neurons in the CA1 field, but not in the CA2/3 fields, at 5 days postischemia. In the sham group, CD200 expression was found in pyramidal neurons of the CA1 field, and the immunoreactivity in the group with ischemia was decreased at 6 h postischemia, dramatically increased at 12 h postischemia, decreased (to level found at 6 h postischemia) at 1 and 2 days postischemia, and significantly increased again at 5 days postischemia. At 5 days postischemia, CD200 immunoreactivity was strongly expressed in microglia and GABAergic neurons. However, in the CA3 field, the change in CD200 immunoreactivity in pyramidal neurons was markedly weaker than that in the CA1 field, showing there was no expression of CD 200 in microglia and GABAergic neurons. In addition, treatment of 10 mg/kg risperidone (an atypical antipsychotic drug) after the ischemia hardly changed CD200 immunoreactivity in the CA1 field, showing that CA1 pyramidal neurons were protected from the ischemic injury. These results indicate that the transient ischemia-induced change in CD200 expression may be associated with specific and selective neuronal death in the hippocampal CA1 field following transient forebrain ischemia.
Asunto(s)
Antígenos CD/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Ataque Isquémico Transitorio/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Risperidona/farmacología , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Gerbillinae , Ataque Isquémico Transitorio/patología , Masculino , Microglía/patología , Prosencéfalo/irrigación sanguínea , Prosencéfalo/patología , Células Piramidales/efectos de los fármacos , Células Piramidales/patologíaRESUMEN
Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions. In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1 region. Short-term memory did not vary significantly between ischemic gerbils with IF and those exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1 pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after ischemic insult in both groups. Taken together, our study suggests that IF for three months increases CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to disruption of the blood-brain barrier, which triggers gliosis after ischemic insults.
Asunto(s)
Calbindina 1/genética , Ayuno , Expresión Génica , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Animales , Calbindina 1/inmunología , Muerte Celular/genética , Muerte Celular/inmunología , Gerbillinae , Gliosis/etiología , Inmunoglobulina G/inmunología , Masculino , Neuronas/metabolismo , Neuronas/patología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patologíaRESUMEN
Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood-brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.
Asunto(s)
Angelica/química , Astrocitos/patología , Benzopiranos/uso terapéutico , Barrera Hematoencefálica/patología , Butiratos/uso terapéutico , Ataque Isquémico Transitorio/patología , Extractos Vegetales/uso terapéutico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Benzopiranos/química , Benzopiranos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Butiratos/química , Butiratos/farmacología , Gerbillinae , Proteína Ácida Fibrilar de la Glía/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Inmunoglobulina G/metabolismo , Masculino , Neuraminidasa/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Estándares de Referencia , Memoria Espacial/efectos de los fármacosRESUMEN
Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1ß and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.
Asunto(s)
Antiinflamatorios/farmacología , Isquemia Encefálica/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Pinus/química , Prosencéfalo/efectos de los fármacos , Animales , Antiinflamatorios/química , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Flavonoides/química , Flavonoides/farmacología , Expresión Génica/efectos de los fármacos , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patología , Inflamación , Interleucina-13/agonistas , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/agonistas , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Fármacos Neuroprotectores/química , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Proantocianidinas/química , Proantocianidinas/farmacología , Prosencéfalo/metabolismo , Prosencéfalo/patología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Transient ischemia in brains causes neuronal damage, gliosis, and blood-brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus tomentiglandulosa extract and examined the effects of Populus tomentiglandulosa extract on neuronal damage/death, astrogliosis, and BBB breakdown in the striatum, which is related to motor behavior, following 15-min transient ischemia in the forebrain in gerbils. The gerbils were pre-treated with 50, 100, and 200 mg/kg of the extract. The latter showed significant effects against ischemia-reperfusion injury. Ischemia-induced hyperactivity using spontaneous motor activity test was significantly attenuated by the treatment. Striatal cells (neurons) were dead at five days after the ischemia; however, pre-treatment with the extract protected the striatal cells from ischemia/reperfusion injury. Ischemia-induced reactive astrogliosis was significantly alleviated, in particular, astrocyte end feet, which are a component of BBB, were significantly preserved. Immunoglobulin G, which is not found in intact brain parenchyma, was apparently shown (an indicator of extravasation) in striatal parenchyma at five days after the ischemia, but IgG leakage was dramatically attenuated in the parenchyma by the pre-treatment. Based on these findings, we suggest that Populus tomentiglandulosa extract rich in phenolic compounds can be employed as a pharmaceutical composition to develop a preventive material against brain ischemic injury.
Asunto(s)
Astrocitos , Barrera Hematoencefálica , Gerbillinae , Polifenoles , Populus , Animales , Muerte Celular/efectos de los fármacos , Hipocampo/metabolismo , Neuronas/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológicoRESUMEN
BACKGROUND: Ischemic stroke is a main cause of mortality. Blood-brain barrier (BBB) breakdown appears to play a critical role in inflammation in patients with ischemic stroke and acceleration of brain injury. The BBB has a protective function and is composed of endothelial cells, pericytes, and astrocytes. In ischemic stroke treatments, regulation of vascular endothelial growth factor (VEGF)-A and vascular endothelial growth factor receptor (VEGFR)-2 is a crucial target despite adverse effects. Our previous study found that loss of C-type lectin family 14 member A (CLEC14A) activated VEGF-A/VEGFR-2 signaling in developmental and tumoral angiogenesis. Here, we evaluate the effects of BBB impairment caused by CLEC14A deficiency in ischemia-reperfusion injury. METHODS: In vitro fluorescein isothiocyanate (FITC)-dextran permeability, transendothelial electrical resistance (TEER) assay, and immunostaining were used to evaluate endothelial integrity. BBB permeability was assessed using Evans blue dye and FITC-dextran injection in Clec14a-/- (CLEC14A-KO) mice and wild-type mice. Middle cerebral artery occlusion surgery and behavioral assessments were performed to evaluate the neurologic damage. The change of tight junctional proteins, adhesion molecules, pro-inflammatory cytokines, and microglial were confirmed by immunofluorescence staining, Western blotting, and quantitative reverse transcription polymerase chain reaction of brain samples. RESULTS: In endothelial cells, knockdown of CLEC14A increased FITC-dextran permeability and decreased transendothelial electrical resistance; the severity of this effect increased with VEGF treatment. Immunofluorescence staining revealed that tight junctional proteins were attenuated in the CLEC14A knockdown endothelial cells. Consistent with the in vitro results, CLEC14A-KO mice that were injected with Evans blue dye had cerebral vascular leakage at postnatal day 8; wild-type mice had no leakage. We used a middle cerebral artery occlusion model and found that CLEC14A-KO mice had severe infarcted brain and neurological deficits with upregulated VEGFR-2 expression. FITC-dextran leakage was present in CLEC14A-KO mice after ischemia-reperfusion, and the numbers of tight junctional molecules were significantly decreased. Loss of CLEC14A increased the pro-inflammatory response through adhesion molecule expression, and glial cells were activated. CONCLUSIONS: These results suggest that activation of VEGFR-2 in CLEC14A-KO mice aggravates ischemic stroke by exacerbating cerebral vascular leakage and increasing neuronal inflammation after ischemia-reperfusion injury.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Daño por Reperfusión/metabolismo , Animales , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Inflamación/metabolismo , Inflamación/patología , Lectinas Tipo C/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuronas/patología , Permeabilidad , Daño por Reperfusión/genética , Daño por Reperfusión/patologíaRESUMEN
It is questionable whether intermittent fasting (IF) protects against brain ischemic injury. This study examined whether IF increased anti-inflammatory cytokines and protected neurons from ischemia-reperfusion injury in the gerbil hippocampus. Gerbils were subjected to 1-day alternating fasting as IF for 1, 2, or 3 months and assigned to sham or 5 min of transient ischemia. We examined the changes in anti-inflammatory cytokines (IL-4 and IL-13), neurons and IgG by immunohistochemistry or immunofluorescence staining in the cornu ammonis 1 (CA1) region of the hippocampus before and after ischemia. IF increased IL-13 immunoreactivity in the CA1 region before ischemia, but did not affect IL-4 immunoreactivity. After ischemia, IL-13 and 4 immunoreactivities in the CA1 region were significantly lower in IF gerbils than in non-IF gerbils. In the IF gerbils, the CA1 pyramidal neurons were not protected from ischemic injury; in these gerbils, strong IgG immunoreactivity was seen in the CA1 parenchyma, indicating leakage of the BBB. In brief, IF increased IL-13 in the CA1 region, but these neurons were not protected from transient ischemic injury evidenced by IgG immunoreactivity in the CA1 parenchyma. This study indicates that IF increased some anti-inflammatory cytokines but did not afford neuroprotection against ischemic insults via BBB disruption.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Ayuno/fisiología , Hipocampo/fisiopatología , Interleucina-13/metabolismo , Células Piramidales/metabolismo , Daño por Reperfusión/fisiopatología , Animales , Gerbillinae , Hipocampo/metabolismo , Masculino , Daño por Reperfusión/metabolismoRESUMEN
Fat-mass and obesity-associated protein (Fto) plays important roles in energy metabolism. It also acts as a demethylase and is most abundantly found in the brain. In the present study, we examined the spatial and temporal changes of Fto immunoreactivity after five minutes of transient forebrain ischemia in the hippocampus. In the control group, Fto immunoreactivity was mainly observed in the nucleus of pyramidal cells in the CA1 and CA3 regions as well as the polymorphic layer, granule cell layer, and subgranular zone of the dentate gyrus. Fto immunoreactivity was transiently, but not significantly, increased in the hippocampal CA3 region and the dentate gyrus two days after ischemia compared to mice without ischemia in the sham-operated group. Four days after ischemia, low Fto immunoreactivity was observed in the stratum pyramidale of the CA1 region because of neuronal death, but Fto immunoreactive cells were abundantly detected in the stratum pyramidale of the CA3 region, which is relatively resistant to ischemic damage. Thereafter, Fto immunoreactivity progressively decreased in the hippocampal CA1 and CA3 regions and the dentate gyrus until ten days after ischemia. At this time-point, Fto immunoreactivity was significantly lower in the hippocampal CA1 and CA3 regions and the dentate gyrus compared to that in the sham-operated group. The reduction of Fto immunoreactive structures in the hippocampus may be associated with impairments in Fto-related hippocampal function.
Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/biosíntesis , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Expresión Génica , Gerbillinae , Hipocampo/patología , MasculinoRESUMEN
A number of studies have demonstrated that marine carbohydrates display anti-oxidant, anti-melanogenic, and anti-aging activities in the skin. Laminarin (LA), a low-molecular-weight polysaccharide, is found in brown algae. The benefits of LA in ultraviolet B (UVB) induced photodamage of the skin have not been reported. The aim of this study was to investigate the effects of pre-treated LA on histopathological changes and oxidative damage in mouse dorsal skin on day 5, following repeated UVB exposure. Histopathology, Western blot analysis and immunohistochemical studies showed that epidermal thickness in the UVB group was significantly increased; however, the thickness in the UVB group treated with LA (LA/UVB group) was less compared with that of the UVB group. Collagen fibers in the dermis of the UVB group were significantly decreased and destroyed, whereas, in the LA/UVB group, the density of collagen fibers was significantly increased compared with that of the UVB group. Oxidative stress due to superoxide anion production measured via dihydroethidium fluorescence staining was dramatically increased in the UVB group, whereas in the LA/UVB group, the oxidative stress was significantly decreased. Expressions of SOD1, glutathione peroxidase and catalase were markedly reduced in the UVB group, whereas in the LA/UVB group, they were significantly higher along with SOD2 than in the control group. Taken together, our results indicate that LA pretreatment prevents or attenuates skin damage, by decreasing oxidative stress and increasing antioxidant enzymes in mouse dorsal skin.
Asunto(s)
Antioxidantes/metabolismo , Glucanos/farmacología , Piel/efectos de los fármacos , Piel/efectos de la radiación , Superóxidos/metabolismo , Rayos Ultravioleta , Animales , Catalasa/genética , Catalasa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Ratones , Piel/metabolismo , Piel/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Rayos Ultravioleta/efectos adversosRESUMEN
Laminarin is a polysaccharide isolated from brown algae that has various biological and pharmacological activities, such as antioxidant and anti-inflammatory properties. We recently reported that pretreated laminarin exerted neuroprotection against transient forebrain ischemia/reperfusion (IR) injury when we pretreated with 50 mg/kg of laminarin once a day for seven days in adult gerbils. However, there have been no studies regarding a neuroprotective effect of pretreated laminarin against IR injury in aged animals and its related mechanisms. Therefore, in this study, we intraperitoneally inject laminarin (50 mg/kg) once a day to aged gerbils for seven days before IR (5-min transient ischemia) surgery and examine the neuroprotective effect of laminarin treatment and the mechanisms in the gerbil hippocampus. IR injury in vehicle-treated gerbils causes loss (death) of pyramidal neurons in the hippocampal CA1 field at five days post-IR. Pretreatment with laminarin effectively protects the CA1 pyramidal neurons from IR injury. Regarding the laminarin-treated gerbils, production of superoxide anions, 4-hydroxy-2-nonenal expression and pro-inflammatory cytokines [interleukin(IL)-1ß and tumor necrosis factor-α] expressions are significantly decreased in the CA1 pyramidal neurons after IR. Additionally, laminarin treatment significantly increases expressions of superoxide dismutase and anti-inflammatory cytokines (IL-4 and IL-13) in the CA1 pyramidal neurons before and after IR. Taken together, these findings indicate that laminarin can protect neurons from ischemic brain injury in an aged population by attenuating IR-induced oxidative stress and neuroinflammation.