Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Dispos ; 50(9): 1170-1181, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779865

RESUMEN

Predicting human pharmacokinetics (PK) during the drug discovery phase is valuable to assess doses required to reach therapeutic exposures. For orally administered compounds, however, this can be especially difficult, since the absorption process is complex. Vismodegib is a compound with unique nonlinear oral PK characteristics in humans. Oral physiologically based pharmacokinetic (PBPK) models were built using preclinical in vitro and in vivo data and successfully predicted the oral PK profiles in rats, dogs, and monkeys. Simulated drug exposures (area under the concentration-time curve from time 0 to infinity and Cmax) following oral administration were within twofold of observed values for dogs and monkeys, and close to twofold for rats, providing validation to the model structure. Adaptation of this oral PBPK model to humans, using human physiologic parameters coupled with predicted human PK, resulted in underpredictions of vismodegib exposure following both single and multiple doses. When observed human PK was used to drive the oral PBPK model, oral PK profiles in humans were well predicted, with fold errors in predicted versus observed drug exposures being close to 1. Importantly, the oral PBPK model captured the unique nonlinear, nondose-dependent PK of vismodegib at a steady state. The mechanism responsible for nonlinearity was consistent with oral absorption being influenced by nonsink permeation conditions. We introduce a new parameter, the permeation gradient factor, to characterize the effect of nonsink conditions on permeation. Using vismodegib as an example, we demonstrate the value of using oral PBPK models in drug discovery to predict the oral PK of compounds with nonlinear absorption characteristics in human. SIGNIFICANCE STATEMENT: A physiologically based pharmacokinetic (PBPK) model was built to demonstrate the value of these models early in the drug discovery stage for the prediction of human pharmacokinetics for compounds with unusual oral pharmacokinetics. In this study, our PBPK model could successfully capture the unique steady-state oral pharmacokinetics of our model compound, vismodegib. The mechanism for nonlinearity can be attributed to nonsink permeation conditions in vivo. We introduce the permeation gradient factor as a parameter to assess this effect.


Asunto(s)
Anilidas , Modelos Biológicos , Animales , Simulación por Computador , Perros , Haplorrinos , Humanos , Piridinas/farmacocinética , Ratas
2.
BMC Cancer ; 22(1): 468, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484614

RESUMEN

BACKGROUND: Research in treatment of non-small cell lung cancer (NSCLC) has shown promising results with stereotactic ablative radiotherapy (SABR) of oligometastatic disease, wherein distant disease may be limited to one or a few distant organs by host factors. Traditionally, PET/CT has been used in detecting metastatic disease and avoiding futile surgical intervention, however, sensitivity and specificity is limited to only 81 and 79%, respectively. Mediastinal staging still identifies occult nodal disease in up to 20% of NSCLC patients initially thought to be operative candidates. Endobronchial ultrasound and transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive tool for the staging and diagnosis of thoracic malignancy. When EBUS is combined with endoscopic ultrasound using the same bronchoscope (EUS-B), the diagnostic sensitivity and negative predictive value increase to 84 and 97%, respectively. Endoscopic staging in patients with advanced disease has never been studied, but may inform treatment if a curative SABR approach is being taken. METHODS: This is a multi-centre, prospective, cohort study with two-stage design. In the first stage, 10 patients with oligometastatic NSCLC (lung tumour ± hilar/mediastinal lymphadenopathy) with up to 5 synchronous metastases will be enrolled An additional 19 patients will be enrolled in the second stage if rate of treatment change is greater than 10% in the first stage. Patients will be subject to EBUS or combined modality EBUS/EUS-B to assess bilateral lymph node stations using a N3 to N2 to N1 progression. Primary endpoint is defined as the rate of change to treatment plan including change from SABR to conventional dose radiation, change in mediastinal radiation field, and change from curative to palliative intent treatment. DISCUSSION: If a curative approach with SABR for oligometastatic disease is being explored, invasive mediastinal staging may guide treatment and prognosis. This study will provide insight into the use of endoscopic mediastinal staging in determining changes in treatment plan of NSCLC. Results will inform the design of future phase II trials. TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT04852588. Date of registration: April 19, 2021. PROTOCOL VERSION: 1.1 on December 9, 2021.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Metástasis Linfática/radioterapia , Estadificación de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos
3.
J Pharmacol Exp Ther ; 369(3): 406-418, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30940693

RESUMEN

The ability of rodent immune-mediated arthritis models to quantitatively predict therapeutic activity of antiarthritis agents is poorly understood. Two commonly used preclinical models of arthritis are adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) in rats. The objective of the current study is to investigate the relationship between efficacy in AIA and CIA in rats, and clinical efficacy in rheumatoid arthritis patients using translational pharmacokinetic-pharmacodynamic (PK-PD) analysis. A range of doses of indomethacin (a nonsteroidal anti-inflammatory drug), and three disease-modifying antirheumatic drugs (DMARDs), methotrexate, etanercept, and tofacitinib, were evaluated in AIA and CIA rats. Dexamethasone was included in this study as a positive control. The area under the ankle diameter-time profile (AUCankle) and ankle histopathology summed scores (AHSS) were used as efficacy endpoints for activity against disease symptoms (joint inflammation) and disease progression (joint damage), respectively. Translational PK-PD analysis was performed to rank order preclinical efficacy endpoints at clinically relevant concentrations. For each drug tested, inhibition of AUCankle and AHSS scores was generally comparable in both magnitude and rank order. Overall, based on both AUCankle and the AHSS inhibition, the rank ordering of preclinical activity for the DMARDs evaluated was tofacitinib > etanercept ≥ methotrexate. This ranking of preclinical efficacy was consistent with reported clinical efficacy. Of interest, indomethacin showed equal or often better efficacy than the three DMARDs evaluated on inhibiting AHSS despite having limited ability to prevent joint damage clinically in patients. The translational value of performing PK-PD analysis of arthritis models in rats is discussed.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/farmacocinética , Antirreumáticos/farmacología , Antirreumáticos/farmacocinética , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Investigación Biomédica Traslacional , Animales , Tobillo/patología , Antiinflamatorios no Esteroideos/uso terapéutico , Antirreumáticos/uso terapéutico , Artritis Experimental/patología , Relación Dosis-Respuesta a Droga , Masculino , Ratas
4.
Xenobiotica ; 49(12): 1423-1433, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30794022

RESUMEN

Several physiologically-based pharmacokinetic (PBPK) models have been reported for intravenous (IV) and subcutaneous (SC) injections, but there has been a paucity of work for intramuscular (IM) injections. The primary objective of this work was a wide-scale evaluation of the predictive performance of IM PBPK models of therapeutic proteins. PBPK models for all administration routes available in the literature have regarded muscle as the total muscle (TM) in the body; however, anatomically, the body is composed of discrete muscle groups. Clinically, IM is administered to a specific muscle (SM). We explored the predictive performance of IM PBPK models with an SM or TM dosing site. The plasma concentration-time profiles of seven therapeutic proteins after an IM dose in humans served as the clinically observed data for model evaluation - this was a diverse group ranging from 30 to 149 kDa from six protein classes. Pharmacokinetic parameters Cmax, tmax, AUC0-∞, and ka were estimated. SM and TM IM PBPK approaches were compared using Average Fold Error (AFE) and Pearson Chi-Square LineShape analyses. This work represents the first wide-scale validation of IM PBPK models and suggests that these models predict IM PBPK reasonably well. The SM and TM approach provided comparable performance.


Asunto(s)
Inyecciones Intramusculares , Proteínas/administración & dosificación , Proteínas/farmacocinética , Área Bajo la Curva , Humanos , Modelos Biológicos , Proteínas/uso terapéutico
5.
J Pharmacol Exp Ther ; 360(1): 226-238, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27821712

RESUMEN

Bruton's tyrosine kinase (BTK) is a member of the Tec family of cytoplasmic tyrosine kinases involved in B-cell and myeloid cell signaling. Small molecule inhibitors of BTK are being investigated for treatment of several hematologic cancers and autoimmune diseases. GDC-0853 ((S)-2-(3'-(hydroxymethyl)-1-methyl-5-((5-(2-methyl-4-(oxetan-3-yl)piperazin-1-yl)pyridin-2-yl)amino)-6-oxo-1,6-dihydro-[3,4'-bipyridin]-2'-yl)-7,7-dimethyl-3,4,7,8-tetrahydro-2H-cyclopenta[4,5]pyrrolo[1,2-a]pyrazin-1(6H)-one) is a selective and reversible oral small-molecule BTK inhibitor in development for the treatment of rheumatoid arthritis and systemic lupus erythematosus. In Sprague-Dawley (SD) rats, administration of GDC-0853 and other structurally diverse BTK inhibitors for 7 days or longer caused pancreatic lesions consisting of multifocal islet-centered hemorrhage, inflammation, fibrosis, and pigment-laden macrophages with adjacent lobular exocrine acinar cell atrophy, degeneration, and inflammation. Similar findings were not observed in mice or dogs at much higher exposures. Hemorrhage in the peri-islet vasculature emerged between four and seven daily doses of GDC-0853 and was histologically similar to spontaneously occurring changes in aging SD rats. This suggests that GDC-0853 could exacerbate a background finding in younger animals. Glucose homeostasis was dysregulated following a glucose challenge; however, this occurred only after 28 days of administration and was not directly associated with onset or severity of pancreatic lesions. There were no changes in other common serum biomarkers assessing endocrine and exocrine pancreatic function. Additionally, these lesions were not readily detectable via Doppler ultrasound, computed tomography, or magnetic resonance imaging. Our results indicate that pancreatic lesions in rats are likely a class effect of BTK inhibitors, which may exacerbate an islet-centered pathology that is unlikely to be relevant to humans.


Asunto(s)
Páncreas/efectos de los fármacos , Piperazinas/toxicidad , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Piridonas/toxicidad , Pirroles/toxicidad , Agammaglobulinemia Tirosina Quinasa , Animales , Perros , Relación Dosis-Respuesta a Droga , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Humanos , Masculino , Ratones , Páncreas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas , Especificidad de la Especie
6.
Bioorg Med Chem Lett ; 26(18): 4455-4461, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27524313

RESUMEN

Modification of the δ-sultam ring of RORc inverse agonist 2 led to the discovery of more polar oxa-sultam 65. The less lipophilic inverse agonist (65) displayed high potency in a biochemical assay, which translated into inhibition of IL-17 production in human peripheral blood mononuclear cells. The successful reduction of lipophilicity of this new analog gave rise to additional improvements in ROR selectivity and aqueous kinetic solubility, as well as reduction in plasma protein binding, while maintaining high cellular permeability.


Asunto(s)
Lípidos/química , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Descubrimiento de Drogas , Agonismo Inverso de Drogas , Naftalenosulfonatos/química
7.
Bioorg Med Chem Lett ; 26(2): 575-579, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26675441

RESUMEN

BTK inhibitor GDC-0834 (1) was found to be rapidly metabolized in human studies, resulting in a suspension of clinical trials. The primary route of metabolism was through cleavage of the acyclic amide bond connecting the terminal tetrahydrobenzothiophene with the central linker aryl ring. SAR studies were focused on reducing metabolic cleavage of this amide, and resulted in the identification of several central aryl linker substituents that conferred improved stability. The most promising substituted aryl linkers were then incorporated into an optimized pyridazinone scaffold, resulting in the identification of lead analog 23, possessing improved potency, metabolic stability and preclinical properties.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Piridazinas/química , Piridazinas/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología , Tiofenos/química , Tiofenos/farmacología , Agammaglobulinemia Tirosina Quinasa , Animales , Perros , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Tirosina Quinasas/metabolismo , Piridazinas/metabolismo , Piridazinas/farmacocinética , Pirimidinonas/metabolismo , Pirimidinonas/farmacocinética , Ratas , Tiofenos/metabolismo , Tiofenos/farmacocinética
8.
Drug Discov Today Technol ; 21-22: 51-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27978988

RESUMEN

Translational pharmacokinetic/pharmacodynamic (PK/PD) analysis is becoming an increasingly important tool for the identification and selection of new anticancer agents. There are two important elements of effectively using PK/PD analysis to translate preclinical antitumor efficacy from tumor bearing mice (xenografts and allografts) to cancer patients. These two sometimes overlapping elements are termed translation 'WITHIN' and 'ACROSS' species. Translating 'WITHIN' species refers to the quantitative characterization of drug action and disease behavior within tumor bearing mice using PK/PD modeling in order to use this information to make predictions of drug response in humans. Translating 'ACROSS' species refers to use of PK/PD modeling to quantify species similarities and differences in drug response in order to understand the clinical relevance of preclinical efficacy data.


Asunto(s)
Antineoplásicos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Ratones , Neoplasias/metabolismo , Resultado del Tratamiento
9.
Biopharm Drug Dispos ; 37(2): 75-92, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26461173

RESUMEN

The mechanisms of absorption, distribution, metabolism and elimination of small and large molecule therapeutics differ significantly from one another and can be explored within the framework of a physiologically based pharmacokinetic (PBPK) model. This paper briefly reviews fundamental approaches to PBPK modeling, in which drug kinetics within tissues and organs are explicitly represented using physiologically meaningful parameters. The differences in PBPK models applied to small/large molecule drugs are highlighted, thus elucidating differences in absorption, distribution and elimination properties between these two classes of drugs in a systematic manner. The absorption of small and large molecules differs with respect to their common extravascular routes of delivery (oral versus subcutaneous). The role of the lymphatic system in drug distribution, and the involvement of tissues as sites of elimination (through catabolism and target mediated drug disposition) are unique features of antibody distribution and elimination that differ from small molecules, which are commonly distributed into the tissues but are eliminated primarily by liver metabolism. Fundamental differences exist in the ability to predict human pharmacokinetics based upon preclinical data due to differing mechanisms governing small and large molecule disposition. These differences have influence on the evolving utilization of PBPK modeling in the discovery and development of small and large molecule therapeutics.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Modelos Biológicos , Animales , Humanos
10.
Bioorg Med Chem Lett ; 25(19): 4109-13, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26321361

RESUMEN

A high-throughput screen of the Genentech/Roche compound collection using a retinoic acid receptor-related orphan receptor C (RORc, RORγ, or NR1F3) biochemical assay revealed a N-sulfonyl-tetrahydroquinoline hit. Herein, we describe the hit-to-lead optimization and structure-activity relationships of these tetrahydroquinoline RORc inverse agonists. Through iterative synthesis and analog design, we identified compounds with improved biochemical RORc inverse agonist activity and RORc cellular potencies. These improved N-sulfonyl-tetrahydroquinoline compounds also exhibited selectivity for RORc over other nuclear receptors.


Asunto(s)
Agonismo Inverso de Drogas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Quinolinas/farmacología , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
11.
Bioorg Med Chem Lett ; 25(15): 2907-12, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26048793

RESUMEN

The nuclear receptor (NR) retinoic acid receptor-related orphan receptor gamma (RORγ, RORc, or NR1F3) is a promising target for the treatment of autoimmune diseases. RORc is a critical regulator in the production of the pro-inflammatory cytokine interleukin-17. We discovered a series of potent and selective imidazo[1,5-a]pyridine and -pyrimidine RORc inverse agonists. The most potent compounds displayed >300-fold selectivity for RORc over the other ROR family members, PPARγ, and NRs in our cellular selectivity panel. The favorable potency, selectivity, and physiochemical properties of GNE-0946 (9) and GNE-6468 (28), in addition to their potent suppression of IL-17 production in human primary cells, support their use as chemical biology tools to further explore the role of RORc in human biology.


Asunto(s)
Imidazoles/química , Imidazoles/farmacología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Piridinas/química , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Línea Celular , Células Cultivadas , Descubrimiento de Drogas , Células HEK293 , Humanos , Imidazoles/metabolismo , Imidazoles/farmacocinética , Interleucina-17/inmunología , Hígado/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Piridinas/metabolismo , Piridinas/farmacocinética , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratas , Relación Estructura-Actividad
12.
Bioorg Med Chem Lett ; 25(6): 1333-7, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25701252

RESUMEN

SAR studies focused on improving the pharmacokinetic (PK) properties of the previously reported potent and selective Btk inhibitor CGI-1746 (1) resulted in the clinical candidate GDC-0834 (2), which retained the potency and selectivity of CGI-1746, but with much improved PK in preclinical animal models. Structure based design efforts drove this work as modifications to 1 were investigated at both the solvent exposed region as well as 'H3 binding pocket'. However, in vitro metabolic evaluation of 2 revealed a non CYP-mediated metabolic process that was more prevalent in human than preclinical species (mouse, rat, dog, cyno), leading to a high-level of uncertainly in predicting human pharmacokinetics. Due to its promising potency, selectivity, and preclinical efficacy, a single dose IND was filed and 2 was taken in to a single dose phase I trial in healthy volunteers to quickly evaluate the human pharmacokinetics. In human, 2 was found to be highly labile at the exo-cyclic amide bond that links the tetrahydrobenzothiophene moiety to the central aniline ring, resulting in insufficient parent drug exposure. This information informed the back-up program and discovery of improved inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinonas/química , Tiofenos/química , Agammaglobulinemia Tirosina Quinasa , Animales , Benzamidas/química , Benzamidas/metabolismo , Sitios de Unión , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Cristalografía por Rayos X , Perros , Semivida , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/metabolismo , Pirimidinonas/síntesis química , Pirimidinonas/farmacocinética , Ratas , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/farmacocinética
13.
Drug Metab Dispos ; 42(3): 343-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24389420

RESUMEN

Vismodegib (Erivedge, GDC-0449) is a first-in-class, orally administered small-molecule Hedgehog pathway inhibitor that is approved for the treatment of advanced basal cell carcinoma. Previously, we reported results from preclinical and clinical radiolabeled mass balance studies in which we determined that metabolism is the main route of vismodegib elimination. The metabolites of vismodegib are primarily the result of oxidation followed by glucuronidation. The focus of the current work is to probe the mechanisms of formation of three pyridine ring-cleaved metabolites of vismodegib, mainly M9, M13, and M18, using in vitro, ex vivo liver perfusion and in vivo rat studies. The use of stable-labeled ((13)C2,(15)N)vismodegib on the pyridine ring exhibited that the loss of carbon observed in both M9 and M13 was from the C-6 position of pyridine. Interestingly, the source of the nitrogen atom in the amide of M9 was from the pyridine. Evidence for the formation of aldehyde intermediates was observed using trapping agents as well as (18)O-water. Finally, we conclude that cytochrome P450 is involved in the formation of M9, M13, and M18 and that M3 (the major mono-oxidative metabolite) is not the precursor for the formation of these cleaved products; rather, M18 is the primary cleaved metabolite.


Asunto(s)
Anilidas/metabolismo , Piridinas/metabolismo , Anilidas/química , Animales , Biotransformación , Cromatografía Líquida de Alta Presión , Perros , Proteínas Hedgehog/antagonistas & inhibidores , Humanos , Técnicas In Vitro , Hígado/efectos de los fármacos , Hígado/enzimología , Macaca fascicularis , Masculino , Espectrometría de Masas , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Estructura Molecular , Oxidación-Reducción , Perfusión , Piridinas/química , Ratas , Ratas Sprague-Dawley
14.
Anesthesiology ; 120(5): 1118-25, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24487703

RESUMEN

BACKGROUND: Dexmedetomidine is useful during mapping of epileptic foci as it facilitates electrocorticography unlike most other anesthetic agents. Patients with seizure disorders taking enzyme-inducing anticonvulsants appear to be resistant to its sedative effects. The objective of the study was to compare the pharmacokinetic and pharmacodynamic profile of dexmedetomidine in healthy volunteers with volunteers with seizure disorders receiving enzyme-inducing anticonvulsant medications. METHODS: Dexmedetomidine was administered using a step-wise, computer-controlled infusion to healthy volunteers (n = 8) and volunteers with seizure disorders (n = 8) taking phenytoin or carbamazapine. Sedation and dexmedetomidine plasma levels were assessed at baseline, during the infusion steps, and after discontinuation of the infusion. Sedation was assessed by using the Observer's Assessment of Alertness/Sedation Scale, Ramsay Sedation Scale, and Visual Analog Scale and processed electroencephalography (entropy) monitoring. Pharmacokinetic analysis was performed on both groups, and differences between groups were determined using the standard two-stage approach. RESULTS: A two-compartment model was fit to dexmedetomidine concentration-time data. Dexmedetomidine plasma clearance was 43% higher in the seizure group compared with the control group (42.7 vs. 29.9 l/h; P = 0.007). In contrast, distributional clearance and the volume of distribution of the central and peripheral compartments were similar between the groups. No difference in sedation was detected between the two groups during a controlled range of target plasma concentrations. CONCLUSION: This study demonstrates that subjects with seizure disorders taking enzyme-inducing anticonvulsant medications have an increased plasma clearance of dexmedetomidine as compared with healthy control subjects.


Asunto(s)
Anticonvulsivantes/sangre , Dexmedetomidina/sangre , Hemodinámica/fisiología , Adulto , Anticonvulsivantes/administración & dosificación , Dexmedetomidina/administración & dosificación , Interacciones Farmacológicas/fisiología , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Femenino , Hemodinámica/efectos de los fármacos , Humanos , Infusiones Intravenosas , Masculino , Tasa de Depuración Metabólica/efectos de los fármacos , Tasa de Depuración Metabólica/fisiología , Adulto Joven
15.
Bioorg Med Chem Lett ; 24(9): 2182-7, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24685544

RESUMEN

Screening a nuclear receptor compound subset in a RORc biochemical binding assay revealed a benzylic tertiary sulfonamide hit. Herein, we describe the identification of compounds with improved RORc biochemical inverse agonist activity and cellular potencies. These improved compounds also possessed appreciable selectivity for RORc over other nuclear receptors.


Asunto(s)
Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Sulfonamidas/química , Sulfonamidas/farmacología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Relación Estructura-Actividad
16.
Bioorg Med Chem Lett ; 24(16): 3891-7, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25017032

RESUMEN

Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma-protein unbound fraction and improvements in cellular permeability and aqueous solubility.


Asunto(s)
Proteínas Sanguíneas/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Sulfonamidas/farmacología , Animales , Sitios de Unión/efectos de los fármacos , Proteínas Sanguíneas/metabolismo , Cristalografía por Rayos X , Perros , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células de Riñón Canino Madin Darby , Modelos Moleculares , Estructura Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Ratas , Solubilidad , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
17.
Bioorg Med Chem Lett ; 24(24): 5769-5776, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25453817

RESUMEN

The identification of a new series of RORc inverse agonists is described. Comprehensive structure-activity relationship studies of this reversed sulfonamide series identified potent RORc inverse agonists in biochemical and cellular assays which were also selective against a panel of nuclear receptors. Our work has contributed a compound that may serve as a useful in vitro tool to delineate the complex biological pathways involved in signalling through RORc. An X-ray co-crystal structure of an analogue with RORc has also provided useful insights into the binding interactions of the new series.


Asunto(s)
Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Sulfonamidas/química , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Citocinas/biosíntesis , Agonismo Inverso de Drogas , Células HEK293 , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Simulación de Dinámica Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/toxicidad
18.
Clin Transl Sci ; 17(1): e13676, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37905360

RESUMEN

Exposure-response (ER) analysis is used to optimize dose and dose regimens during clinical development. Characterization of relationships between drug exposure and efficacy or safety outcomes can be utilized to make dose adjustments that improve patient response. Therapeutic antibodies typically show predictable pharmacokinetics (PK) but can exhibit clearance that decreases over time due to treatment. Moreover, time-dependent changes in clearance are frequently associated with drug response, with larger decreases in clearance and increased exposure seen in patients who respond to treatment. This often confounds traditional ER analysis, as drug response influences exposure rather than the reverse. In this review, we survey published population PK analyses for reported time-dependent drug clearance effects across 158 therapeutic antibodies approved or in regulatory review. We describe the mechanisms by which time-dependent clearance can arise, and evaluate trends in frequency, magnitude, and time scale of changes in clearance with respect to indication, mechanistic interpretation of time-dependence, and PK modeling techniques employed. We discuss the modeling and simulation strategies commonly used to characterize time-dependent clearance, and examples where time-dependent clearance has impeded ER analysis. A case study using population model simulation was explored to interrogate the impact of time-dependent clearance on ER analysis and how it can lead to spurious conclusions. Overall, time-dependent clearance arises frequently among therapeutic antibodies and has spurred erroneous conclusions in ER analysis. Appropriate PK modeling techniques aid in identifying and characterizing temporal shifts in exposure that may impede accurate ER assessment and successful dose optimization.


Asunto(s)
Modelos Biológicos , Humanos , Simulación por Computador , Relación Dosis-Respuesta a Droga
19.
Artículo en Inglés | MEDLINE | ID: mdl-38937298

RESUMEN

PURPOSE: Among cases of breast cancer, estrogen receptor-positive (ER +), PIK3CA-mutant, HER2- advanced breast cancer stands as a particularly complex clinical indication where approximately 40% of ER + /HER2- breast carcinomas present mutations in the PIK3CA gene. A significant hurdle in treating ER + breast cancer lies in surmounting the challenges of endocrine resistance. In the clinical setting, a multifaceted approach is essential for this indication, one that not only explores the effectiveness of individual treatments but also delves into the potential gains in therapeutic outcome from combination therapies. METHODS: In the current study, longitudinal tumor growth inhibition (TGI) models were developed to characterize tumor response over time in postmenopausal women with ER + /HER2- advanced or metastatic breast cancer undergoing treatment with fulvestrant alone or in combination with the PI3K inhibitor, taselisib. Impact of clinically relevant covariates on TGI metrics was assessed to identify patient subsets most likely to benefit from treatment with fulvestrant monotherapy or combination with taselisib. RESULTS: Tumor growth rate constant (Kg) was found to increase with increasing baseline tumor size and in the absence of baseline endocrine sensitivity. Further, Kg decreased in the absence of baseline liver metastases both in fulvestrant monotherapy and combination therapy with taselisib. Overall, additive/potentially synergistic anti-tumor effects were observed in patients treated with the taselisib-fulvestrant combination. CONCLUSION: These results have important implications for understanding the therapeutic impact of combination treatment approaches and individualized responses to these treatments. Finally, this work, emphasizes the importance of model informed drug development for targeted cancer therapy. CLINICAL TRIAL REGISTRATION: NCT02340221 Registered January 16, 2015, NCT01296555 Registered February 14, 2011.

20.
J Clin Pharmacol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639108

RESUMEN

Cancer remains a significant global health challenge, and despite remarkable advancements in therapeutic strategies, poor tolerability of drugs (causing dose reduction/interruptions) and/or the emergence of drug resistance are major obstacles to successful treatment outcomes. Metastatic renal cell carcinoma (mRCC) accounts for 2% of global cancer diagnoses and deaths. Despite the initial success of targeted therapies in mRCC, challenges remain to overcome drug resistance that limits the long-term efficacy of these treatments. Our analysis aim was to develop a semi-mechanistic longitudinal exposure-tumor growth inhibition model for patients with mRCC to characterize and compare everolimus (mTORC1) and apitolisib's (dual PI3K/mTORC1/2) ability to inhibit tumor growth, and quantitate each drug's efficacy decay caused by emergence of tumor resistance over time. Model-estimated on-treatment tumor growth rate constant was 1.7-fold higher for apitolisib compared to everolimus. Estimated half-life for loss of treatment effect over time for everolimus was 16.1 weeks compared to 7.72 weeks for apitolisib, suggesting a faster rate of tumor re-growth for apitolisib patients likely due to the emergence of resistance. Goodness-of-fit plots including visual predictive check indicated a good model fit and the model was able to capture individual tumor size-time profiles. Based on our knowledge, this is the first clinical report to quantitatively assess everolimus (mTORC1) and apitolisib (PI3K/mTORC1/2) efficacy decay in patients with mRCC. These results highlight the difference in overall efficacy of 2 drugs due to the quantified efficacy decay caused by emergence of resistance, and emphasize the importance of model-informed drug development for targeted cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA